代码随想录算法训练营第四十九天丨 动态规划part12

309.最佳买卖股票时机含冷冻期

思路

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期

动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多人搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。

从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中

「今天卖出股票」是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?

因为本题有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态

  • 确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

java 复制代码
dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
dp[i][2] = dp[i-1][0]+prices[i];
dp[i][3] = dp[i-1][2];
  • dp数组如何初始化

这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。

如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

  • 确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

  • 举例推导dp数组

以 [1,2,3,0,2] 为例,dp数组如下:

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

代码如下:

java 复制代码
class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length][4];
        /*
        0:持股
        1:保持卖出股票
        2:卖出股票
        3:冷冻期
         */
        dp[0][0] = -prices[0];
        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
            dp[i][2] = dp[i-1][0]+prices[i];
            dp[i][3] = dp[i-1][2];
        }
        return Math.max(dp[prices.length-1][1],Math.max(dp[prices.length-1][2],dp[prices.length-1][3]));
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

#总结

这次把冷冻期这道题目,讲的很透彻了,细分为四个状态,其状态转移也十分清晰,建议大家都按照四个状态来分析,如果只划分三个状态确实很容易给自己绕进去。


714.买卖股票的最佳时机含手续费

思路

本题贪心解法:贪心算法:买卖股票的最佳时机含手续费(opens new window)

性能是:

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

本题使用贪心算法并不好理解,也很容易出错,那么我们再来看看是使用动规的方法如何解题。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作

以上分析完毕,代码如下:

java 复制代码
class Solution {
    public int maxProfit(int[] prices, int fee) {
        int[][] dp = new int[prices.length][2];
        /*
        dp[i][0]:持有股票
        dp[i][1]:不持有股票
         */
        dp[0][0] = -prices[0];
        int num = 0;
        for (int i = 1; i < prices.length; i++) {
            dp[i][0]= Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]+prices[i] - fee);
        }
        return Math.max(dp[prices.length-1][0],dp[prices.length-1][1]);
    }
}

相关推荐
好奇龙猫10 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸1 小时前
链表的归并排序
数据结构·算法·链表
jrrz08281 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time1 小时前
golang学习2
算法
南宫生2 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
Perishell3 小时前
无人机避障——大疆与Airsim中的角速度信息订阅获取
linux·动态规划·无人机
懒惰才能让科技进步3 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara3 小时前
函数对象笔记
c++·算法
泉崎4 小时前
11.7比赛总结
数据结构·算法