pytorch中常用的损失函数

1 损失函数的作用

损失函数是模型训练的基础,并且在大多数机器学习项目中,如果没有损失函数,就无法驱动模型做出正确的预测。 通俗地说,损失函数是一种数学函数或表达式,用于衡量模型在某些数据集上的表现。损失函数在深度学习主要作用如下:

  • 衡量模型性能:损失函数用于评估模型的预测结果与真实结果之间的误差程度。较小的损失值表示模型的预测结果与真实结果更接近,反之则表示误差较大。因此,损失函数提供了一种度量模型性能的方式。
  • 参数优化:在训练机器学习和深度学习模型时,损失函数被用作优化算法的目标函数。通过最小化损失函数,可以调整模型的参数,使模型能够更好地逼近真实结果。
  • 反向传播:在深度学习中,通过反向传播算法计算损失函数对模型参数的梯度。这些梯度被用于参数更新,以便优化模型。损失函数在反向传播中扮演着重要的角色,指导参数的调整方向。
  • 防止过拟合:过拟合是指模型在训练数据上表现良好,但在新数据上表现较差的现象。损失函数可以帮助在训练过程中监控模型的过拟合情况。通过观察训练集和验证集上的损失,可以及早发现模型是否过拟合,从而采取相应的措施,如正则化等。

2 pytorch中常见的损失函数

损失函数 名称 适用场景
torch.nn.MSELoss() 均方误差损失 回归
torch.nn.L1Loss() 平均绝对值误差损失 回归
torch.nn.CrossEntropyLoss() 交叉熵损失 多分类
torch.nn.NLLLoss() 负对数似然函数损失 多分类
torch.nn.NLLLoss2d() 图片负对数似然函数损失 图像分割
torch.nn.KLDivLoss() KL散度损失 回归
torch.nn.BCELoss() 二分类交叉熵损失 二分类
torch.nn.MarginRankingLoss() 评价相似度的损失
torch.nn.MultiLabelMarginLoss() 多标签分类的损失 多标签分类
torch.nn.SmoothL1Loss() 平滑的L1损失 回归
torch.nn.SoftMarginLoss() 多标签二分类问题的损失 多标签二分类

2.1 L1损失函数

预测值与标签值进行相差,然后取绝对值,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.L1Loss

import torch
import torch.nn as nn

Loss_fn = nn.L1Loss(size_average=None, reduce=None, reduction='mean')

input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = Loss_fn(input, target)
print(output)

运行结果显示如下:

tensor(1.4177, grad_fn=<MeanBackward0>)

2.2 L2损失函数

预测值与标签值进行相差,然后取平方,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.MSELoss

import torch.nn as nn
import torch

loss = nn.MSELoss(size_average=None, reduce=None, reduction='mean')

input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
print(output)

运行结果显示如下:

tensor(1.7956, grad_fn=<MseLossBackward0>)

2.3 Huber Loss损失函数

简单来说就是L1和L2损失函数的综合版本,结合了两者的优点,公式可见下,Pytorch调用函数:nn.SmoothL1Loss

import matplotlib.pyplot as plt
import torch

# 定义函数和参数
smooth_l1_loss = nn.SmoothL1Loss(reduction='none')
x = torch.linspace(-1, 1, 10000)
y = smooth_l1_loss(torch.zeros(10000), x)

# 绘制图像
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('SmoothL1Loss')
plt.title('SmoothL1Loss Function')
plt.show()

运行结果显示如下:

2.4 二分类交叉熵损失函数

简单来说,就是度量两个概率分布间的差异性信息,在某一程度上也可以防止梯度学习过慢,公式可见下,Pytorch调用函数有两个,一个是nn.BCELoss函数,用的时候要结合Sigmoid函数,另外一个是nn.BCEWithLogitsLoss()

import torch.nn as nn
import torch

m = nn.Sigmoid()
loss = nn.BCELoss()
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
output = loss(m(input), target)
print(output)

运行结果显示如下:

tensor(0.6214, grad_fn=<BinaryCrossEntropyBackward0>)

import torch
import torch.nn as nn

label = torch.empty((2, 3)).random_(2)
x = torch.randn((2, 3), requires_grad=True)

bce_with_logits_loss = nn.BCEWithLogitsLoss()
output = bce_with_logits_loss(x, label)

print(output)

运行结果显示如下:

tensor(0.7346, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)

2.5 多分类交叉熵损失函数

也是度量两个概率分布间的差异性信息,Pytorch调用函数也有两个,一个是nn.NLLLoss,用的时候要结合log softmax处理,另外一个是nn.CrossEntropyLoss

import torch
import torch.nn.functional as F

input = torch.randn(3, 5, requires_grad=True)
target = torch.tensor([1, 0, 4])
output = F.nll_loss(F.log_softmax(input, dim=1), target)
print(output)

运行结果显示如下:

tensor(2.9503, grad_fn=<NllLossBackward0>)

import torch
import torch.nn as nn

loss = nn.CrossEntropyLoss()
inputs = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(inputs, target)

print(output)

运行结果显示如下:

tensor(1.6307, grad_fn=<NllLossBackward0>)

2.6 自定义损失

通过对 nn 模块进行子类化,将损失函数创建为神经网络图中的节点。 这意味着我们的自定义损失函数是一个 PyTorch 层,与卷积层完全相同。

class Custom_MSE(nn.Module):
  def __init__(self):
    super(Custom_MSE, self).__init__();

  def forward(self, predictions, target):
    square_difference = torch.square(predictions - target)
    loss_value = torch.mean(square_difference)
    return loss_value
  
  # def __call__(self, predictions, target):
  #   square_difference = torch.square(y_predictions - target)
  #   loss_value = torch.mean(square_difference)
  #   return loss_value

可以在"forward"函数调用或"call"内部定义损失的实际实现。

3 总结

损失函数在人工智能领域中起着至关重要的作用,它不仅是模型训练和优化的基础,也是评估模型性能、解决过拟合问题以及指导模型选择的重要工具。不同的损失函数适用于不同的问题和算法,选择合适的损失函数对于取得良好的模型性能至关重要。

相关推荐
audyxiao0014 分钟前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
骑个小蜗牛8 分钟前
Python 标准库:string——字符串操作
python
Jeremy_lf23 分钟前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
桃花键神1 小时前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜1 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6192 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen2 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝2 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界2 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
黄公子学安全2 小时前
Java的基础概念(一)
java·开发语言·python