Transformer模型

目录

[1. 概述](#1. 概述)

[2. Model Architecture](#2. Model Architecture)

[2.1 自回归](#2.1 自回归)

[2.2 编码器与解码器](#2.2 编码器与解码器)

[2.3 Attention](#2.3 Attention)

[2.4 Attention---mask](#2.4 Attention—mask)

[2.5 Multi-Head Attention](#2.5 Multi-Head Attention)

[2.6 自注意力使用](#2.6 自注意力使用)

[2.7 point-wise feed forward network](#2.7 point-wise feed forward network)

[2.8 embeddings](#2.8 embeddings)

[2.9 positional Encoding](#2.9 positional Encoding)


1. 概述

之前的模型,如RNN等,需要按时序做运算,对与并行设备能够减少运算时间这一方法并不能运用得很好,比如ht需要由之前ht-1的隐藏状态(包含历史信息)来完善,但如果序列很长的话,以往的历史信息很容易被丢失。

而Transformer模型中的attention可以进行并行运算。Multi-Head-Attention多头注意力机制可以模拟卷积神经网络多输出通道的一个效果

文章选图来自:Attention Is All You Need

地址:https://arxiv.org/abs/1706.03762

2. Model Architecture

2.1 自回归

编码器将句子中词的表示(x1,...,xn)变为对应的词向量z=(z1,...,zn),解码器拿到编码器的输出z,生成一个长为m的序列(n与m可以是不一样长的,比如中英翻译时句子可能是不一样长的)。auto-regressive:编码器可以看到完整的句子,但是在解码时只能一个一个的生成。z生成(y1,...,ym),在生成yt时,可以将y1到yt-1全都拿到,即在过去时候的输出可以作为当前时刻的输入。

2.2 编码器与解码器

编码器:

解码器:

在解码器做预测时,不应该看到之后的那些时刻的输出。而在注意力机制中,每一次都能看到完整的输入,所以需要避免这个情况的发生。即在解码器训练的时候,在预测第t个时刻的输出时,不应该看到t时刻以后的那些输入。可以用一个带掩码(masked)的注意力机制,保证训练和预测时候的行为是一致的。

2.3 Attention

value、key与query

output是value的加权和。对于每一个value的权重,是这个value对应的key与查询query的相似度算来的。(权重等价于query和你对应的key的那个相似度,相似度越大权重越大)

注意:不同相似函数会导致不一样的注意力版本。

Transformer中的注意力机制:

将query与每个key做内积作为相似度,内积值越大,表示相似度越高。(假设:给一个query,再给n个key value pair,则query会和每个key做内积,算出n个值,再放入softmax得到n个非负且加起来为1的一个权重,将权重作用在value上得到输出)

2.4 Attention---mask

对于第t时间的qt即query,在做计算时应只看k1,...,kt-1,不看kt及之后的。但是计算也可以算,我们加入mask,即对于qt和kt和之后计算的值换成一个非常大的负数,在softmax出来后对应的那些权重都会变成0。实现只用到v1,...,vt-1对应权重的效果。

2.5 Multi-Head Attention

将query、key、value投影到一个低维,再做h次的注意力函数,将每一个函数的输出并在一起,再投影回来,可以得到最终的输出。

V、K、Q进入线性层(投影到比较低的维度),放入Scaled Dot-Product Attention中做h次**(多头)**运算并得到h个输出,将这些向量合并在一起,最后做一次线性投影。

**使用多头注意力机制的作用:投影的参数可以学习,去匹配不同模式需要的相似函数。**类似卷积神经网络的多输出通道。

将不同头的输出结果concat起来,投影到中。对每一个头,把q、k、v通过一个不同的可以学习的投影到低维上面,再做注意力函数。

2.6 自注意力使用

attention是如何在编码器和解码器之间传递信息时起到作用?

回答:去有效的把编码器的输出根据我们想要的东西给拎出来。即在解码器时输入的不一样,会根据当前的向量去在编码器的输出里面挑选我们感兴趣的东西

2.7 point-wise feed forward network

在我们输入的序列里,每一个词对应一个点。把一个MLP(多层感知器)对每一个词作用一次,做一个语义空间的转换

下图是b站up主:跟李沐学AI

Transformer与RNN对于序列信息的使用(左Transformer 右RNN):

2.8 embeddings

由于输入是一个个词,需要将其映射为一个向量。embedding可以给任何一个词,学习一个长为d的向量来表示。编码器需要embedding,解码器的输入也需要embedding,在softmax前面的线性也需要embedding,且这三个embedding是一样的权重。

2.9 positional Encoding

由于attention不会有时序信息,则在处理时序数据时需要把时序信息加进来 。例如:RNN是将上一个时刻的输出作为下一个时刻的输入来传递历史信息。attention的做法是在输入里面加入时序信息 ,比如一个词在位置i ,将i这个位置的数字加到输入里面(即将词在句子中的位置也放入输入里)。

相关推荐
开放知识图谱1 小时前
论文浅尝 | HippoRAG:神经生物学启发的大语言模型的长期记忆(Neurips2024)
人工智能·语言模型·自然语言处理
威化饼的一隅1 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
人类群星闪耀时1 小时前
大模型技术优化负载均衡:AI驱动的智能化运维
运维·人工智能·负载均衡
编码小哥1 小时前
通过opencv加载、保存视频
人工智能·opencv
机器学习之心1 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
发呆小天才O.oᯅ1 小时前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
lovelin+v175030409662 小时前
智能电商:API接口如何驱动自动化与智能化转型
大数据·人工智能·爬虫·python
rpa_top2 小时前
RPA 助力电商:自动化商品信息上传,节省人力资源 —— 以影刀 RPA 为例【rpa.top】
大数据·前端·人工智能·自动化·rpa
视觉语言导航2 小时前
arXiv-2024 | STMR:语义拓扑度量表示引导的大模型推理无人机视觉语言导航
人工智能·具身智能
MorleyOlsen2 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习