机器学习基础之《回归与聚类算法(6)—模型保存与加载》

一、背景

现在我们预测每次都要重新运行一遍模型。完整的流程应该是不断调整阈值重复计算。

当训练或者计算好一个模型之后,那么如果别人需要我们提供结果预测,就需要保存模型(主要是保存算法的参数)。

二、sklearn模型的保存和加载API

1、import joblib

保存:joblib.dump(rf, "test.pkl")

rf:是预估器estimator

test.pkl:是保存的名字

将预估器序列化保存在本地

加载:estimator = joblib.load("test.pkl")

2、代码

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.metrics import mean_squared_error
import joblib

def linear1():
  """
  正规方程的优化方法对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = LinearRegression()
  estimator.fit(x_train, y_train)

  # 5、得出模型
  print("正规方程-权重系数为:\n", estimator.coef_)
  print("正规方程-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("正规方程-均方误差为:\n", error)
  return None

def linear2():
  """
  梯度下降的优化方法对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = SGDRegressor()
  estimator.fit(x_train, y_train)

  # 5、得出模型
  print("梯度下降-权重系数为:\n", estimator.coef_)
  print("梯度下降-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("梯度下降-均方误差为:\n", error)
  return None

def linear3():
  """
  岭回归对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = Ridge()
  estimator.fit(x_train, y_train)

  # 保存模型
  joblib.dump(estimator, "my_ridge.pkl")

  # 5、得出模型
  print("岭回归-权重系数为:\n", estimator.coef_)
  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("岭回归-均方误差为:\n", error)
  return None

def linear4():
  """
  岭回归对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)

  # 加载模型
  estimator = joblib.load("my_ridge.pkl")

  # 5、得出模型
  print("岭回归-权重系数为:\n", estimator.coef_)
  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("岭回归-均方误差为:\n", error)
  return None

if __name__ == "__main__":
  # 代码1:正规方程的优化方法对波士顿房价进行预测
  linear1()
  # 代码2:梯度下降的优化方法对波士顿房价进行预测
  linear2()
  # 代码3:岭回归对波士顿房价进行预测
  linear3()
  # 代码4:加载模型
  linear4()
相关推荐
你觉得20514 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
向上的车轮15 小时前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
你觉得20517 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
人工干智能17 小时前
科普:One-Class SVM和SVDD
人工智能·机器学习·支持向量机
MPCTHU17 小时前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
_一条咸鱼_18 小时前
LangChain 入门到精通
机器学习
3DVisionary18 小时前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星18 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星18 小时前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
呵呵哒( ̄▽ ̄)"18 小时前
线性代数:同解(1)
python·线性代数·机器学习