机器学习基础之《回归与聚类算法(6)—模型保存与加载》

一、背景

现在我们预测每次都要重新运行一遍模型。完整的流程应该是不断调整阈值重复计算。

当训练或者计算好一个模型之后,那么如果别人需要我们提供结果预测,就需要保存模型(主要是保存算法的参数)。

二、sklearn模型的保存和加载API

1、import joblib

保存:joblib.dump(rf, "test.pkl")

rf:是预估器estimator

test.pkl:是保存的名字

将预估器序列化保存在本地

加载:estimator = joblib.load("test.pkl")

2、代码

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.metrics import mean_squared_error
import joblib

def linear1():
  """
  正规方程的优化方法对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = LinearRegression()
  estimator.fit(x_train, y_train)

  # 5、得出模型
  print("正规方程-权重系数为:\n", estimator.coef_)
  print("正规方程-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("正规方程-均方误差为:\n", error)
  return None

def linear2():
  """
  梯度下降的优化方法对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = SGDRegressor()
  estimator.fit(x_train, y_train)

  # 5、得出模型
  print("梯度下降-权重系数为:\n", estimator.coef_)
  print("梯度下降-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("梯度下降-均方误差为:\n", error)
  return None

def linear3():
  """
  岭回归对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)
  
  # 4、预估器
  estimator = Ridge()
  estimator.fit(x_train, y_train)

  # 保存模型
  joblib.dump(estimator, "my_ridge.pkl")

  # 5、得出模型
  print("岭回归-权重系数为:\n", estimator.coef_)
  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("岭回归-均方误差为:\n", error)
  return None

def linear4():
  """
  岭回归对波士顿房价进行预测
  """
  # 1、获取数据
  boston = load_boston()

  # 2、划分数据集
  x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)

  # 3、标准化
  transfer = StandardScaler()
  x_train = transfer.fit_transform(x_train)
  x_test = transfer.transform(x_test)

  # 加载模型
  estimator = joblib.load("my_ridge.pkl")

  # 5、得出模型
  print("岭回归-权重系数为:\n", estimator.coef_)
  print("岭回归-偏置为:\n", estimator.intercept_)

  # 6、模型评估
  y_predict = estimator.predict(x_test)
  print("预测房价:\n", y_predict)
  error = mean_squared_error(y_test, y_predict)
  print("岭回归-均方误差为:\n", error)
  return None

if __name__ == "__main__":
  # 代码1:正规方程的优化方法对波士顿房价进行预测
  linear1()
  # 代码2:梯度下降的优化方法对波士顿房价进行预测
  linear2()
  # 代码3:岭回归对波士顿房价进行预测
  linear3()
  # 代码4:加载模型
  linear4()
相关推荐
l12345sy5 小时前
Day21_【机器学习—决策树(3)—剪枝】
决策树·机器学习·剪枝
笔触狂放6 小时前
【机器学习】综合实训(一)
人工智能·机器学习
Billy_Zuo6 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
非门由也7 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy7 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也7 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
java1234_小锋8 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 主成分分析 (PCA)
python·机器学习·scikit-learn
java1234_小锋8 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 线性判别分析 (LDA)
python·机器学习·scikit-learn
小王爱学人工智能9 小时前
快速了解迁移学习
人工智能·机器学习·迁移学习
非门由也9 小时前
《sklearn机器学习——管道和复合估算器》可视化复合估计器
人工智能·机器学习·sklearn