C# Onnx LSTR 基于Transformer的端到端实时车道线检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

lstr_360x640.onnx

Inputs


name:input_rgb

tensor:Float[1, 3, 360, 640]

name:input_mask

tensor:Float[1, 1, 360, 640]


Outputs


name:pred_logits

tensor:Float[1, 7, 2]

name:pred_curves

tensor:Float[1, 7, 8]

name:foo_out_1

tensor:Float[1, 7, 2]

name:foo_out_2

tensor:Float[1, 7, 8]

name:weights

tensor:Float[1, 240, 240]


项目

VS2022+.net framework 4.8+OpenCvSharp 4.8 +Microsoft.ML.OnnxRuntime 1.16.2

代码

cs 复制代码
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.IO;
using System.Text;
using System.Drawing;
 
namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
 
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
 
        int inpWidth;
        int inpHeight;
 
        Mat image;
 
        string model_path = "";
 
        float[] factors = new float[2];
 
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;
 
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
 
        Tensor<float> result_tensors;
 
        int len_log_space = 50;
        float[] log_space;
 
        float[] mean = new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };
 
        Scalar[] lane_colors = new Scalar[] { new Scalar(68, 65, 249), new Scalar(44, 114, 243), new Scalar(30, 150, 248), new Scalar(74, 132, 249), new Scalar(79, 199, 249), new Scalar(109, 190, 144), new Scalar(142, 144, 77), new Scalar(161, 125, 39) };
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
 
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
 
            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
 
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
 
            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
 
            // 创建推理模型类,读取本地模型文件
            model_path = "model/lstr_360x640.onnx";
 
            inpWidth = 640;
            inpHeight = 360;
 
            onnx_session = new InferenceSession(model_path, options);
 
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
 
            FileStream fileStream = new FileStream("model/log_space.bin", FileMode.Open);
            BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);
 
            log_space = new float[len_log_space];
 
            byte[] byteTemp;
            float fTemp;
            for (int i = 0; i < len_log_space; i++)
            {
                byteTemp = br.ReadBytes(4);
                fTemp = BitConverter.ToSingle(byteTemp, 0);
                log_space[i] = fTemp;
            }
            br.Close();
 
            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
 
        }
 
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等......";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();
 
            //图片缩放
            image = new Mat(image_path);
 
            int img_height = image.Rows;
            int img_width = image.Cols;
 
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
 
            int row = resize_image.Rows;
            int col = resize_image.Cols;
 
            float[] input_tensor_data = new float[1 * 3 * inpHeight * inpWidth];
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < row; i++)
                {
                    for (int j = 0; j < col; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }
            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
 
            float[] input_mask_data = new float[1 * 1 * inpHeight * inpWidth];
            for (int i = 0; i < input_mask_data.Length; i++)
            {
                input_mask_data[i] = 0.0f;
            }
            mask_tensor = new DenseTensor<float>(input_mask_data, new[] { 1, 1, inpHeight, inpWidth });
 
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_rgb", input_tensor));
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_mask", mask_tensor));
 
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;
 
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
 
            float[] pred_logits = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pred_curves = results_onnxvalue[1].AsTensor<float>().ToArray();
 
            int logits_h = results_onnxvalue[0].AsTensor<float>().Dimensions[1];
            int logits_w = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int curves_w = results_onnxvalue[1].AsTensor<float>().Dimensions[2];
 
            List<int> good_detections = new List<int>();
            List<List<OpenCvSharp.Point>> lanes = new List<List<OpenCvSharp.Point>>();
            for (int i = 0; i < logits_h; i++)
            {
                float max_logits = -10000;
                int max_id = -1;
                for (int j = 0; j < logits_w; j++)
                {
                    float data = pred_logits[i * logits_w + j];
                    if (data > max_logits)
                    {
                        max_logits = data;
                        max_id = j;
                    }
                }
                if (max_id == 1)
                {
                    good_detections.Add(i);
                    int index = i * curves_w;
                    List<OpenCvSharp.Point> lane_points = new List<OpenCvSharp.Point>();
                    for (int k = 0; k < len_log_space; k++)
                    {
                        float y = pred_curves[0 + index] + log_space[k] * (pred_curves[1 + index] - pred_curves[0 + index]);
                        float x = (float)(pred_curves[2 + index] / Math.Pow(y - pred_curves[3 + index], 2.0) + pred_curves[4 + index] / (y - pred_curves[3 + index]) + pred_curves[5 + index] + pred_curves[6 + index] * y - pred_curves[7 + index]);
                        lane_points.Add(new OpenCvSharp.Point(x * img_width, y * img_height));
                    }
                    lanes.Add(lane_points);
                }
            }
 
            Mat result_image = image.Clone();
 
            //draw lines
            List<int> right_lane = new List<int>();
            List<int> left_lane = new List<int>();
            for (int i = 0; i < good_detections.Count; i++)
            {
                if (good_detections[i] == 0)
                {
                    right_lane.Add(i);
                }
                if (good_detections[i] == 5)
                {
                    left_lane.Add(i);
                }
            }
 
            if (right_lane.Count() == left_lane.Count())
            {
                Mat lane_segment_img = result_image.Clone();
 
                List<OpenCvSharp.Point> points = new List<OpenCvSharp.Point>();
 
                points.AddRange(lanes.First());
 
                points.Reverse();
 
                points.AddRange(lanes[left_lane[0]]);
 
                Cv2.FillConvexPoly(lane_segment_img, points, new Scalar(0, 191, 255));
                Cv2.AddWeighted(result_image, 0.7, lane_segment_img, 0.3, 0, result_image);
            }
 
            for (int i = 0; i < lanes.Count(); i++)
            {
                for (int j = 0; j < lanes[i].Count(); j++)
                {
                    Cv2.Circle(result_image, lanes[i][j], 3, lane_colors[good_detections[i]], -1);
                }
            }
 
            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }
 
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
 
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦2 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐3 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
96773 小时前
对抗样本存在的原因
深度学习
bluefox19794 小时前
使用 Oracle.DataAccess.Client 驱动 和 OleDB 调用Oracle 函数的区别
开发语言·c#
弗锐土豆4 小时前
工业生产安全-安全帽第二篇-用java语言看看opencv实现的目标检测使用过程
java·opencv·安全·检测·面部
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络