C# Onnx LSTR 基于Transformer的端到端实时车道线检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

lstr_360x640.onnx

Inputs


name:input_rgb

tensor:Float[1, 3, 360, 640]

name:input_mask

tensor:Float[1, 1, 360, 640]


Outputs


name:pred_logits

tensor:Float[1, 7, 2]

name:pred_curves

tensor:Float[1, 7, 8]

name:foo_out_1

tensor:Float[1, 7, 2]

name:foo_out_2

tensor:Float[1, 7, 8]

name:weights

tensor:Float[1, 240, 240]


项目

VS2022+.net framework 4.8+OpenCvSharp 4.8 +Microsoft.ML.OnnxRuntime 1.16.2

代码

cs 复制代码
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.IO;
using System.Text;
using System.Drawing;
 
namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
 
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
 
        int inpWidth;
        int inpHeight;
 
        Mat image;
 
        string model_path = "";
 
        float[] factors = new float[2];
 
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;
 
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
 
        Tensor<float> result_tensors;
 
        int len_log_space = 50;
        float[] log_space;
 
        float[] mean = new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };
 
        Scalar[] lane_colors = new Scalar[] { new Scalar(68, 65, 249), new Scalar(44, 114, 243), new Scalar(30, 150, 248), new Scalar(74, 132, 249), new Scalar(79, 199, 249), new Scalar(109, 190, 144), new Scalar(142, 144, 77), new Scalar(161, 125, 39) };
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
 
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
 
            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
 
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
 
            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
 
            // 创建推理模型类,读取本地模型文件
            model_path = "model/lstr_360x640.onnx";
 
            inpWidth = 640;
            inpHeight = 360;
 
            onnx_session = new InferenceSession(model_path, options);
 
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
 
            FileStream fileStream = new FileStream("model/log_space.bin", FileMode.Open);
            BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);
 
            log_space = new float[len_log_space];
 
            byte[] byteTemp;
            float fTemp;
            for (int i = 0; i < len_log_space; i++)
            {
                byteTemp = br.ReadBytes(4);
                fTemp = BitConverter.ToSingle(byteTemp, 0);
                log_space[i] = fTemp;
            }
            br.Close();
 
            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
 
        }
 
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等......";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();
 
            //图片缩放
            image = new Mat(image_path);
 
            int img_height = image.Rows;
            int img_width = image.Cols;
 
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
 
            int row = resize_image.Rows;
            int col = resize_image.Cols;
 
            float[] input_tensor_data = new float[1 * 3 * inpHeight * inpWidth];
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < row; i++)
                {
                    for (int j = 0; j < col; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }
            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
 
            float[] input_mask_data = new float[1 * 1 * inpHeight * inpWidth];
            for (int i = 0; i < input_mask_data.Length; i++)
            {
                input_mask_data[i] = 0.0f;
            }
            mask_tensor = new DenseTensor<float>(input_mask_data, new[] { 1, 1, inpHeight, inpWidth });
 
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_rgb", input_tensor));
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_mask", mask_tensor));
 
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;
 
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
 
            float[] pred_logits = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pred_curves = results_onnxvalue[1].AsTensor<float>().ToArray();
 
            int logits_h = results_onnxvalue[0].AsTensor<float>().Dimensions[1];
            int logits_w = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int curves_w = results_onnxvalue[1].AsTensor<float>().Dimensions[2];
 
            List<int> good_detections = new List<int>();
            List<List<OpenCvSharp.Point>> lanes = new List<List<OpenCvSharp.Point>>();
            for (int i = 0; i < logits_h; i++)
            {
                float max_logits = -10000;
                int max_id = -1;
                for (int j = 0; j < logits_w; j++)
                {
                    float data = pred_logits[i * logits_w + j];
                    if (data > max_logits)
                    {
                        max_logits = data;
                        max_id = j;
                    }
                }
                if (max_id == 1)
                {
                    good_detections.Add(i);
                    int index = i * curves_w;
                    List<OpenCvSharp.Point> lane_points = new List<OpenCvSharp.Point>();
                    for (int k = 0; k < len_log_space; k++)
                    {
                        float y = pred_curves[0 + index] + log_space[k] * (pred_curves[1 + index] - pred_curves[0 + index]);
                        float x = (float)(pred_curves[2 + index] / Math.Pow(y - pred_curves[3 + index], 2.0) + pred_curves[4 + index] / (y - pred_curves[3 + index]) + pred_curves[5 + index] + pred_curves[6 + index] * y - pred_curves[7 + index]);
                        lane_points.Add(new OpenCvSharp.Point(x * img_width, y * img_height));
                    }
                    lanes.Add(lane_points);
                }
            }
 
            Mat result_image = image.Clone();
 
            //draw lines
            List<int> right_lane = new List<int>();
            List<int> left_lane = new List<int>();
            for (int i = 0; i < good_detections.Count; i++)
            {
                if (good_detections[i] == 0)
                {
                    right_lane.Add(i);
                }
                if (good_detections[i] == 5)
                {
                    left_lane.Add(i);
                }
            }
 
            if (right_lane.Count() == left_lane.Count())
            {
                Mat lane_segment_img = result_image.Clone();
 
                List<OpenCvSharp.Point> points = new List<OpenCvSharp.Point>();
 
                points.AddRange(lanes.First());
 
                points.Reverse();
 
                points.AddRange(lanes[left_lane[0]]);
 
                Cv2.FillConvexPoly(lane_segment_img, points, new Scalar(0, 191, 255));
                Cv2.AddWeighted(result_image, 0.7, lane_segment_img, 0.3, 0, result_image);
            }
 
            for (int i = 0; i < lanes.Count(); i++)
            {
                for (int j = 0; j < lanes[i].Count(); j++)
                {
                    Cv2.Circle(result_image, lanes[i][j], 3, lane_colors[good_detections[i]], -1);
                }
            }
 
            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }
 
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
 
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

相关推荐
安思派Anspire42 分钟前
LangGraph + MCP + Ollama:构建强大代理 AI 的关键(一)
前端·深度学习·架构
程序员陆通1 小时前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot1 小时前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio1 小时前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
DDDDDouble1 小时前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer1 小时前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军1 小时前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`1 小时前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
小码编匠2 小时前
WPF 自定义分页控件,可通过样式模板修改外观
后端·c#·.net
CoovallyAIHub2 小时前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉