决策树的Boosting策略是什么

在决策树的Boosting策略中,最常见的算法是梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)。GBDT是一种集成学习方法,通过串行训练多个决策树,并根据前一个树的预测结果来调整下一个树的训练目标,从而逐步提升模型的性能。

以下是梯度提升决策树的基本思想和步骤:

  1. 训练第一个决策树: 初始时,模型只包含一个简单的决策树。这个树通常是一个深度较浅的树,用于拟合训练数据的残差(实际值与预测值的差异)。

  2. 计算残差: 计算当前模型对训练数据的预测值与实际标签之间的残差。这是模型预测的错误部分。

  3. 训练下一个决策树: 使用残差作为新的目标,训练下一个决策树。这个新树的预测结果将被添加到前一个树的预测结果上,逐步改进整体模型的预测性能。

  4. 迭代过程: 重复上述步骤,每次训练一个新的决策树,调整模型的预测结果,逐渐减小残差。

  5. 集成结果: 最终的预测结果是所有决策树的预测结果的累加。

梯度提升决策树通过迭代训练,不断修正模型的预测误差,使得整体模型逐步逼近真实数据分布。这种Boosting策略使得梯度提升决策树在许多机器学习任务中表现出色,如分类、回归等。著名的梯度提升框架包括XGBoost(极限梯度提升(Extreme gradient boosting,XGBoost))、LightGBM和CatBoost。这些框架在性能和效率上进行了优化,成为许多数据科学竞赛中常用的工具。

相关推荐
QxQ么么5 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
雪碧聊技术7 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java7 小时前
机器学习初级
人工智能·机器学习
Mz12217 小时前
day05 移动零、盛水最多的容器、三数之和
数据结构·算法·leetcode
SoleMotive.7 小时前
如果用户反映页面跳转得非常慢,该如何排查
jvm·数据库·redis·算法·缓存
念越7 小时前
判断两棵二叉树是否相同(力扣)
算法·leetcode·入门
qq_17082750 CNC注塑机数采7 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
~~李木子~~8 小时前
中文社交媒体情感分析实战:基于B站评论的机器学习与深度学习对比
深度学习·机器学习·媒体