决策树的Boosting策略是什么

在决策树的Boosting策略中,最常见的算法是梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)。GBDT是一种集成学习方法,通过串行训练多个决策树,并根据前一个树的预测结果来调整下一个树的训练目标,从而逐步提升模型的性能。

以下是梯度提升决策树的基本思想和步骤:

  1. 训练第一个决策树: 初始时,模型只包含一个简单的决策树。这个树通常是一个深度较浅的树,用于拟合训练数据的残差(实际值与预测值的差异)。

  2. 计算残差: 计算当前模型对训练数据的预测值与实际标签之间的残差。这是模型预测的错误部分。

  3. 训练下一个决策树: 使用残差作为新的目标,训练下一个决策树。这个新树的预测结果将被添加到前一个树的预测结果上,逐步改进整体模型的预测性能。

  4. 迭代过程: 重复上述步骤,每次训练一个新的决策树,调整模型的预测结果,逐渐减小残差。

  5. 集成结果: 最终的预测结果是所有决策树的预测结果的累加。

梯度提升决策树通过迭代训练,不断修正模型的预测误差,使得整体模型逐步逼近真实数据分布。这种Boosting策略使得梯度提升决策树在许多机器学习任务中表现出色,如分类、回归等。著名的梯度提升框架包括XGBoost(极限梯度提升(Extreme gradient boosting,XGBoost))、LightGBM和CatBoost。这些框架在性能和效率上进行了优化,成为许多数据科学竞赛中常用的工具。

相关推荐
猫头虎10 分钟前
HAMi 2.7.0 发布:全面拓展异构芯片支持,优化GPU资源调度与智能管理
嵌入式硬件·算法·prompt·aigc·embedding·gpu算力·ai-native
漫漫不慢.13 分钟前
算法练习-二分查找
java·开发语言·算法
如竟没有火炬33 分钟前
LRU缓存——双向链表+哈希表
数据结构·python·算法·leetcode·链表·缓存
Greedy Alg35 分钟前
LeetCode 236. 二叉树的最近公共祖先
算法
爱吃生蚝的于勒1 小时前
【Linux】零基础学会Linux之权限
linux·运维·服务器·数据结构·git·算法·github
兮山与2 小时前
算法3.0
算法
爱编程的化学家2 小时前
代码随想录算法训练营第27天 -- 动态规划1 || 509.斐波那契数列 / 70.爬楼梯 / 746.使用最小花费爬楼梯
数据结构·c++·算法·leetcode·动态规划·代码随想录
CoovallyAIHub2 小时前
告别等待!十条高效PyTorch数据增强流水线,让你的GPU不再"饥饿"
深度学习·算法·计算机视觉
海琴烟Sunshine2 小时前
leetcode 66.加一 python
python·算法·leetcode