决策树的Boosting策略是什么

在决策树的Boosting策略中,最常见的算法是梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)。GBDT是一种集成学习方法,通过串行训练多个决策树,并根据前一个树的预测结果来调整下一个树的训练目标,从而逐步提升模型的性能。

以下是梯度提升决策树的基本思想和步骤:

  1. 训练第一个决策树: 初始时,模型只包含一个简单的决策树。这个树通常是一个深度较浅的树,用于拟合训练数据的残差(实际值与预测值的差异)。

  2. 计算残差: 计算当前模型对训练数据的预测值与实际标签之间的残差。这是模型预测的错误部分。

  3. 训练下一个决策树: 使用残差作为新的目标,训练下一个决策树。这个新树的预测结果将被添加到前一个树的预测结果上,逐步改进整体模型的预测性能。

  4. 迭代过程: 重复上述步骤,每次训练一个新的决策树,调整模型的预测结果,逐渐减小残差。

  5. 集成结果: 最终的预测结果是所有决策树的预测结果的累加。

梯度提升决策树通过迭代训练,不断修正模型的预测误差,使得整体模型逐步逼近真实数据分布。这种Boosting策略使得梯度提升决策树在许多机器学习任务中表现出色,如分类、回归等。著名的梯度提升框架包括XGBoost(极限梯度提升(Extreme gradient boosting,XGBoost))、LightGBM和CatBoost。这些框架在性能和效率上进行了优化,成为许多数据科学竞赛中常用的工具。

相关推荐
季明洵2 小时前
C语言实现单链表
c语言·开发语言·数据结构·算法·链表
shandianchengzi2 小时前
【小白向】错位排列|图文解释公考常见题目错位排列的递推式Dn=(n-1)(Dn-2+Dn-1)推导方式
笔记·算法·公考·递推·排列·考公
I_LPL2 小时前
day26 代码随想录算法训练营 回溯专题5
算法·回溯·hot100·求职面试·n皇后·解数独
Yeats_Liao2 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
cpp_25012 小时前
P9586 「MXOI Round 2」游戏
数据结构·c++·算法·题解·洛谷
浅念-2 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
断眉的派大星3 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
有时间要学习3 小时前
面试150——第五周
算法·深度优先
Tadas-Gao3 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
木枷3 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习