Spark通过三种方式创建DataFrame

通过toDF方法创建DataFrame

通过toDF的方法创建

  • 集合rdd中元素类型是样例类的时候,转成DataFrame之后列名默认是属性名
  • 集合rdd中元素类型是元组的时候,转成DataFrame之后列名默认就是_N
  • 集合rdd中元素类型是元组/样例类的时候,转成DataFrame(toDF("ID","NAME","SEX","AGE6"))可以自定义列名
csharp 复制代码
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.junit.Test


case class Person(id:Int,name:String,sex:String,age:Int)
class TestScala {

  val spark = SparkSession
    .builder()
    .appName("test")
    .master("local[4]")
    .getOrCreate()
    import spark.implicits._

  /**
   * 通过toDF的方法创建
   *    集合rdd中元素类型是样例类的时候,转成DataFrame之后列名默认是属性名
   *    集合rdd中元素类型是元组的时候,转成DataFrame之后列名默认就是_N
   */
  @Test
  def createDataFrameByToDF():Unit={
    //TODO 样例类是属性名
    val list = List(Person(1,"zhangsan","man",10),Person(2,"zhang2","woman",66),Person(3,"zhang3","man",70),Person(4,"zhang4","man",22))
    //需要隐士转换
    val df:DataFrame = list.toDF()
    df.show()
    //TODO 元祖是_N
    val list2 = List((1,"zhangsan","man",10),(1,"zhang2","woman",66),(1,"zhang3","man",70),(1,"zhang4","man",22))
    //需要隐士转换
    val df1:DataFrame = list2.toDF()
    df1.show()
    //TODO 自定义属性名
    val list3 = List((1,"zhangsan","man",10),(1,"zhang2","woman",66),(1,"zhang3","man",70),(1,"zhang4","man",22))
    //需要隐士转换
    val df2:DataFrame = list3.toDF("ID","NAME","SEX","AGE6")
    df2.show()
  }
  
  
}

结果

通过读取文件创建DataFrame

json数据

csharp 复制代码
{"age":20,"name":"qiaofeng"}
{"age":19,"name":"xuzhu"}
{"age":18,"name":"duanyu"}
csharp 复制代码
  /**
   * 通过读取文件创建
   */
  @Test
  def createDataFrame():Unit={
    val df = spark.read.json("src/main/resources/user.json")
    df.show()
  }

通过createDataFrame方法创建DF

csharp 复制代码
  @Test
  def createDataFrameByMethod():Unit={
    val fields = Array(StructField("id",IntegerType),StructField("name",StringType),StructField("sex",StringType),StructField("age",IntegerType))
    val schema = StructType(fields)
    val rdd = spark.sparkContext.parallelize(List(Row(1, "zhangsan", "man", 10), Row(2, "zhang2", "woman", 66), Row(3, "zhang3", "man", 70), Row(4, "zhang4", "man", 22)))
    val df = spark.createDataFrame(rdd, schema)
    df.show()
  }
相关推荐
Aloudata1 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
不能再留遗憾了1 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
茶馆大橘1 小时前
微服务系列六:分布式事务与seata
分布式·docker·微服务·nacos·seata·springcloud
材料苦逼不会梦到计算机白富美4 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
拓端研究室TRL4 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗4 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
想进大厂的小王4 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情4 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
编码小袁4 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据