通过20天预测7天

训练集和测试集如何划分,我如何知道期望和实际的对比。

当你希望通过过去20天的数据来预测未来7天时,你需要进行以下步骤:

  1. **数据准备:** 将过去20天的数据整理成合适的格式,其中包括20天的特征和未来7天的目标。

  2. **划分训练集和测试集:** 将整理好的数据划分为训练集和测试集。例如,你可以使用前15天的数据作为训练集,后5天的数据作为测试集。

  3. **模型训练:** 使用训练集来训练你的时间序列预测模型。这可能涉及到选择适当的模型结构(如LSTM、GRU等)、调整超参数等步骤。

  4. **模型预测:** 使用训练好的模型在测试集上进行未来7天的预测。

  5. **评估模型性能:** 比较模型预测的未来7天和实际的未来7天数据,评估模型的性能。这可以通过计算预测值和实际值之间的误差指标(如均方误差、平均绝对误差等)来完成。

以下是一个简单的例子,展示了如何实现这个过程:

python 复制代码
```python
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense

# 假设你有一个包含股票开盘价的numpy数组
stock_prices = np.array([/* 包含至少27天的开盘价数据 */])

# 创建特征(X)和目标(y)
def create_dataset(dataset, look_back=20, look_forward=7):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-look_forward+1):
        a = dataset[i:(i+look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i+look_back:i+look_back+look_forward, 0])
    return np.array(dataX), np.array(dataY)

# 归一化数据
scaler = MinMaxScaler(feature_range=(0, 1))
stock_prices_scaled = scaler.fit_transform(stock_prices.reshape(-1, 1))

# 创建特征和目标
X, y = create_dataset(stock_prices_scaled)

# 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

# 转换数据为LSTM的输入格式 [样本数, 时间步, 特征数]
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))

# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, input_shape=(1, 20)))
model.add(Dense(units=7))
model.compile(optimizer='adam', loss='mean_squared_error')

# 模型训练
model.fit(X_train, y_train, epochs=50, batch_size=32)

# 模型测试
predictions = model.predict(X_test)

# 反归一化预测值和实际值
predictions = scaler.inverse_transform(predictions)
y_test = scaler.inverse_transform(y_test)

# 打印模型在测试集上的预测结果和实际观测结果
print("未来7天的预测结果:", predictions[-1])
print("实际结果:", y_test[-1])
```

这个例子中,`look_back`参数是用来确定用多少天的数据作为输入特征,`look_forward`参数是用来确定预测未来多少天的数据。在你的实际应用中,你可以根据具体问题来调整这两个参数。

相关推荐
小二·14 分钟前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf37 分钟前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
珠海西格电力1 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新1 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技1 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837261 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经1 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl1 小时前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画
杭州杭州杭州2 小时前
李沐动手学深度学习笔记(4)---物体检测基础
人工智能·笔记·深度学习
小二·2 小时前
Python Web 开发进阶实战(终章):从单体应用到 AI 原生生态 —— 45 篇技术演进全景与未来开发者生存指南
前端·人工智能·python