AI视频检索丨历史视频标签化,助力重要事件高效溯源

随着科技的不断发展,安全监控已成为我们生活中不可或缺的一部分。当发生盗窃、人员走失、安全事故等重要事件时,常常需要通过查看视频回放了解事情经过,为解决问题提供证据或指明查找方向。但是,人工查看视频回放往往费时费力,还存在人为因素等导致监控缺失的情况。 因此,提升视频追溯效率和存储安全成为安防监控亟需改进的两大痛点。

为此,悠络客推出AI视频检索,基于人形检测等算法,对传统安防监控进行全面升级,让视频追溯更高效、存储更安全。

在AI视频检索中,我们通过视频AI标注技术对本地和云端存储的视频打上标签。有了这些属性标签,无需再逐帧查看视频回放,只需通过标签属性查询即可快速检索出目标视频。

比如,需要从监控中找到一个穿红色上衣、蓝色裤子、背斜挎包的青年女性,那么只需在人形属性栏中选择对应的性别、服装颜色、挎包信息等属性标签,点击【查询】,系统就会自动筛选出对应的视频时间段,帮我们快速找到目标人物。

此外,AI视频检索还支持人形/移动高亮标签,与长期静止且无人出现的画面有效区分。用户查看视频回放时,只需查看高亮标签对应时段的视频即可,方便用户快速找到目标画面。

AI视频检索不仅可以助力提升视频追溯效率,还支持智能告警,将安防监控从事后追溯提前至事中预警,为保障人身财产安全争取更多宝贵时间。

用户可以通过【AI智能告警设置】新建告警任务、设置告警检测时间段和告警接收人等,检测时间段内一旦发现入侵人员,系统将第一时间通知告警接收人

该功能适用于公司下班后、门店闭店期间等长时间无人的情况。比如,门店上班时间为8:00---22:00,那么可以设置检测时间段为22:00---次日8:00,这样就可以在门店无人的下班时间段保障门店安全。

针对传统监控中存在的重要画面丢失等问题,AI视频检索可以通过结构化云存储在云端保存重要图片/录像。即在所有视频经过AI分析标签化的基础上,将长期静止且无人出现等非重要画面有效过滤,将高亮标签图片/录像上传至云端保存

这可以帮助企业以更少成本投入实现更多有效信息的存储,既解决了本地存储的安全性问题,又解决了云端全量存储成本高的痛点。

相关推荐
孤独且没人爱的纸鹤几秒前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭3 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~4 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码11 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113311 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike12 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇13 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
华清远见IT开放实验室20 分钟前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
OpenVINO 中文社区29 分钟前
实战精选|如何使用 OpenVINO™ 在 ElectronJS 中创建桌面应用程序
人工智能·openvino
只怕自己不够好34 分钟前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉