二百零三、Flume——Flume实时采集数据频率为1s的高频率Kafka数据直接写入ODS层表的HDFS文件路径下

一、目的

在离线数仓中,需要用Flume去采集Kafka中的数据,然后写入HDFS中。

由于每种数据类型的频率、数据大小、数据规模不同,因此每种数据的采集需要不同的Flume配置文件。玩了几天Flume,感觉Flume的使用难点就是配置文件

二、使用场景

静态排队数据是数据频率为1s的数据类型代表,数据量很大、频率很高,因此搞定了静态排队数据的采集就搞定了这一类高频率数据的实时采集问题

1台雷达每日的静态排队数据规模是25MB,10台雷达的数据规模则是250MB

三、静态排队数据的配置文件

agent a1

a1.sources = s1

a1.channels = c1

a1.sinks = k1

configure source s1

a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource

a1.sources.s1.kafka.bootstrap.servers = 192.168.0.27:9092

a1.sources.s1.kafka.topics = topic_b_queue

a1.sources.s1.kafka.consumer.group.id = queue_group

a1.sources.s1.kafka.consumer.auto.offset.reset = latest

a1.sources.s1.batchSize = 1000

configure channel c1

a1.channels.c1.type = memory

a1.channels.c1.capacity = 10000

a1.channels.c1.transactionCapacity = 1000

a1.channels.c1.type = file

a1.channels.c1.checkpointDir = /home/data/flumeData/checkpoint/queue

a1.channels.c1.dataDirs = /home/data/flumeData/flumedata/queue

configure sink k1

a1.sinks.k1.type = hdfs

a1.sinks.k1.hdfs.path = hdfs://hurys23:8020/user/hive/warehouse/hurys_dc_ods.db/ods_queue/day=%Y-%m-%d/

a1.sinks.k1.hdfs.filePrefix = queue

a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 10240000
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 60
a1.sinks.k1.hdfs.minBlockReplicas = 1

Bind the source and sink to the channel

a1.sources.s1.channels = c1

a1.sinks.k1.channel = c1

四、Flume写入HDFS结果

Flume根据时间戳按照ODS层表的分区,将数据写入对应HDFS文件

五、ODS表刷新分区后查验数据

(一)刷新表分区

复制代码
MSCK REPAIR TABLE ods_queue;

(二)查看表数据

复制代码
select * from ods_queue;

六、注意点

(一)配置文件中的重点是红色标记的几点

a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 10240000
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 60
a1.sinks.k1.hdfs.minBlockReplicas = 1

(二)这几个重点参数的含义

|----|------------------|---------------------------------------------------------------------|
| 序号 | Flume参数 | 参数含义 |
| 1 | round | 是否启用时间上的"舍弃",如果启用,则会影响除了%t的其他所有时间表达式 默认值:false |
| 2 | roundValue | 多少时间单位创建一个新的文件夹 |
| 3 | roundUnit | 重新定义时间单位 |
| 4 | rollSize | 当临时文件达到该大小(单位:bytes)时,滚动成目标文件;默认值:1024byte 如果设置成0,则表示不根据临时文件大小来滚动文件 |
| 5 | rollCount | 当events数据达到该数量时候,将临时文件滚动成目标文件;默认值:10 如果设置成0,则表示不根据events数据来滚动文件 |
| 6 | rollInterval | 多久将临时文件滚动成最终目标文件,单位:秒;默认值:30s 如果设置成0,则表示不根据时间来滚动文件; |
| 7 | idleTimeout | 当目前被打开的临时文件在该参数指定的时间(秒)内,没有任何数据写入,则将该临时文件关闭并重命名成目标文件; 默认值:0 |
| 8 | minBlockReplicas | 写入HDFS文件块的最小副本数,一般配置成1才能正确滚动文件 |

更多Flume配置文件参数含义请看鄙人另一篇博客

一百九十一、Flume------Flume配置文件各参数含义(持续完善中)

http://t.csdnimg.cn/o5XbGhttp://t.csdnimg.cn/o5XbG

就先这样吧,如果有问题的话后面再更新!!!

相关推荐
哈哈很哈哈几秒前
Spark 运行流程核心组件(三)任务执行
大数据·分布式·spark
我星期八休息1 小时前
大模型 + 垂直场景:搜索/推荐/营销/客服领域开发新范式与技术实践
大数据·人工智能·python
最初的↘那颗心2 小时前
Flink Stream API - 源码开发需求描述
java·大数据·hadoop·flink·实时计算
白鲸开源2 小时前
收藏!史上最全 Apache SeaTunnel Source 连接器盘点 (2025版),一篇通晓数据集成生态
大数据·数据库·开源
爱疯生活2 小时前
车e估牵头正式启动乘用车金融价值评估师编制
大数据·人工智能·金融
Lx3523 小时前
MapReduce作业调试技巧:从本地测试到集群运行
大数据·hadoop
计算机程序员小杨3 小时前
计算机专业的你懂的:大数据毕设就选贵州茅台股票分析系统准没错|计算机毕业设计|数据可视化|数据分析
java·大数据
BYSJMG3 小时前
计算机大数据毕业设计推荐:基于Spark的气候疾病传播可视化分析系统【Hadoop、python、spark】
大数据·hadoop·python·信息可视化·spark·django·课程设计
励志成为糕手4 小时前
大数据MapReduce架构:分布式计算的经典范式
大数据·hadoop·mapreduce·分布式计算·批处理
计算机毕设残哥4 小时前
大数据毕业设计选题推荐:护肤品店铺运营数据可视化分析系统详解
大数据·信息可视化·课程设计