【论文解读】GPT Understands, Too

一.论文

1.1 P-tuning

区别于之前的工作,这篇工作认为promote可以在句子中的任意位置起到作用,可以将它们插入上下文或目标中

上图中,左图是不使用任何操作,右图是选择在居首和目标前插入promote的embedding,插入promote的过程可以表示为

其中x代表一系列离散的输入令牌,y代表目标(可以理解为希望模型想要给你的回答),e()表示对应的embedding,其实就是将其参数化映射成为伪tokens,即

通过最小化这些参数

1.2 promote生成

嵌入的promote实际上可以理解为不一定离散不相互关联的,而实际上的promote其实应该是高度离散的且具有关联性的,因此作者选择使用双向长短期记忆网络(LSTM),激活函数和MLP来建模这种关系

在推理中,我们只需要输出嵌入h,并且可以丢弃LSTM头

二.代码

本质上是使用一个PromptEncoder来生成伪的embedding添加到原先的embedding中

2.1 训练

训练过程只更新promote_encoder中的参数

2.1.1 PromptEncoder

PTuneForLAMA中实例化了PromptEncoder

PromptEncoder本质上是一个(嵌入 + LSTM + MLP)

python 复制代码
import torch
import torch.nn as nn


class PromptEncoder(torch.nn.Module):
    def __init__(self, template, hidden_size, tokenizer, device, args):
        super().__init__()
        self.device = device
        self.spell_length = sum(template)
        self.hidden_size = hidden_size
        self.tokenizer = tokenizer
        self.args = args
        # ent embedding
        self.cloze_length = template
        self.cloze_mask = [
            [1] * self.cloze_length[0]  # first cloze
            + [1] * self.cloze_length[1]  # second cloze
            + [1] * self.cloze_length[2]  # third cloze
        ]
        self.cloze_mask = torch.LongTensor(self.cloze_mask).bool().to(self.device)

        self.seq_indices = torch.LongTensor(list(range(len(self.cloze_mask[0])))).to(self.device)
        # embedding
        self.embedding = torch.nn.Embedding(len(self.cloze_mask[0]), self.hidden_size).to(self.device)
        # LSTM
        self.lstm_head = torch.nn.LSTM(input_size=self.hidden_size,
                                       hidden_size=self.hidden_size // 2,
                                       num_layers=2,
                                       dropout=self.args.lstm_dropout,
                                       bidirectional=True,
                                       batch_first=True)
        self.mlp_head = nn.Sequential(nn.Linear(self.hidden_size, self.hidden_size),
                                      nn.ReLU(),
                                      nn.Linear(self.hidden_size, self.hidden_size))
        print("init prompt encoder...")

    def forward(self):
        input_embeds = self.embedding(self.seq_indices).unsqueeze(0)
        output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]).squeeze()
        return output_embeds

2.1.2 调用

在PTuneForLAMA的forward函数中调用了embed_input来实现

相关推荐
想暴富,学技术12 分钟前
AI提示词学习基础(一)
人工智能·学习
萤丰信息29 分钟前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
Danceful_YJ29 分钟前
32.Bahdanau 注意力
pytorch·python·深度学习
哥布林学者39 分钟前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(四)RMSprop
深度学习·ai
菠菠萝宝41 分钟前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
大模型真好玩1 小时前
低代码Agent开发框架使用指南(七)—Coze 数据库详解
人工智能·agent·coze
唐兴通个人1 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能
视界先声1 小时前
AIDAv2:重新定义DeFi的AI驱动金融基础设施
人工智能·金融
焦糖码奇朵、1 小时前
移动通信网络建设-实验2:5G站点选型与设备部署
网络·数据库·人工智能·5g·信号处理·基带工程
l1t1 小时前
把ITPUB newkid先生编写的Oracle语法数独求解SQL改写成DuckDB
数据库·人工智能·sql·oracle·duckdb