Hive效率优化记录

Hive是工作中常用的数据仓库工具,提供存储在HDFS文件系统,将结构化数据映射为一张张表以及提供查询和分析功能。

Hive可以存储大规模数据,但是在运行效率上不如传统数据库,这时需要懂得常见场景下提升存储或查询效率的方法,本文记录工作中常见的情形。

map阶段优化

map阶段主要是把文件拆分成一个个文件块。正常情况下,一个map任务的启动和初始化时间远远大于逻辑处理时间,所以可以增大max参数值减少map数;但在计算逻辑较为复杂(字段少记录过多)时可以减少max参数值增大map数,控制map数来协调启动和逻辑处理时间。

sql 复制代码
-- 减少map数
set hive.hadoop.supports.splittable.combineinputformat=true;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 执行前进行小文件合并,进而减少map数目
-- 文件小于1M的会单独产生一个map,文件在1M-256M之间大小的会合并,文件大于256M的拆分为多个
set mapred.min.split.size=1000000;
set mapred.max.split.size=256000000;
set mapred.min.split.size.per.node=256000000;
set mapred.min.split.size.per.rack=256000000;
-- set hive.exec.reducers.bytes.per.reducer=1073741824; -- 控制reduce个数,超过文件大小会产生多个reduce任务

-- 增大map数
-- 一般使用情况是文件不是特别大,但是计算逻辑复杂,计算比较耗时,那么可以强制指定一个map任务个数提高执行效率
set mapred.reduce.tasks=10;
reduce阶段优化

reduce个数决定了最终输出文件的个数。增大reduce的个数会增加输出文件数量,减小reduce个数会减少输出文件数量。reduce个数过多会产生很多小文件影响以后计算效率,reduce个数过少会造成单个reduce处理数据量过大影响效率。

sql 复制代码
-- 1、Hive自动计算reduce个数
set hive.exec.reducers.bytes.per.reducer=500000000; -- 每个reduce任务最多处理500M的数据
set hive.exec.reducers.max=1009; -- 每个任务的最大reduce个数

-- 2、认为指定reduce个数
set mapred.reduce.tasks=10; -- 人为指定10个reduce,会产生10个文件

注意,会产生只有一个reduce的情况:

  1. 查询时使用了order by 全局排序
  2. 表关联join时产生笛卡尔积情况
源头建表优化

建表时可以指定文件压缩格式,不要使用textfile,一般可以使用parquet+snappy格式

sql 复制代码
-- 为了提高计算和存储效率
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
TBLPROPERTIES('parquet.compression'='SNAPPY')
相关推荐
Leo.yuan18 小时前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
isNotNullX21 小时前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
熊猫钓鱼>_>1 天前
Hadoop 用户入门指南:驾驭大数据的力量
大数据·hadoop·分布式
William一直在路上1 天前
SpringBoot 拦截器和过滤器的区别
hive·spring boot·后端
Leo.yuan1 天前
数据分析师如何构建自己的底层逻辑?
大数据·数据仓库·人工智能·数据挖掘·数据分析
抛砖者1 天前
hive/spark sql中unix_timestamp 函数的坑以及时间戳相关的转换
hive·sql·spark
落霞的思绪1 天前
使用云虚拟机搭建hadoop集群环境
大数据·hadoop·分布式
无级程序员2 天前
大数据平台之ranger与ldap集成,同步用户和组
大数据·hadoop
梦想画家2 天前
数据仓库:企业数据管理的核心枢纽
数据仓库
梦想画家4 天前
数据仓库中的代理键:概念、应用与实践指南
数据仓库·代理键·缓慢维度变化