Leetcode 2407. Longest Increasing Subsequence II

Leetcode 2407. Longest Increasing Subsequence II

You are given an integer array nums and an integer k.

Find the longest subsequence of nums that meets the following requirements:>

复制代码
1. The subsequence is strictly increasing and
2. The difference between adjacent elements in the subsequence is at most k.

Return the length of the longest subsequence that meets the requirements.

A subsequence is an array that can be derived from another array by deleting some or no > > elements without changing the order of the remaining elements.

假设我们用一个数组 dp [ ] \text{dp}[] dp[]来存储以当前元素为结尾的最长递增子数列, 我们可以考虑对数组顺序循环,对每一个值 nums [ i ] \text{nums}[i] nums[i],满足constraint: j < i , nums [ j ] + k > = nums [ i ] j < i, \text{nums}[j] + k >= \text{nums}[i] j<i,nums[j]+k>=nums[i]的条件所有 j j j,求 max ⁡ dp [ j ] \max \text{dp}[j] maxdp[j]。

max ⁡ j < i dp [ j ] s . t . nums [ j ] + k > = nums [ i ] \max_{j < i}\text{dp}[j] \quad s.t. \text{nums}[j] + k >= \text{nums}[i] j<imaxdp[j]s.t.nums[j]+k>=nums[i]

为了解这个问题,我们可以构造一个线段树 tree \text{tree} tree,其index可以表示 nums [ ] \text{nums}[] nums[]中的元素值的范围,对应value表示以该元素范围为结尾的最长递增子序列,那么在循环中我们只要查询 tree [ nums [ j ] − k : nums [ j ] − 1 ] \text{tree}[\text{nums}[j]-k : \text{nums}[j]-1] tree[nums[j]−k:nums[j]−1] 即可。这样的时间复杂度相当于扫一遍长度为 N N N的数组 nums \texttt{nums} nums,每次对最大数值范围为 M M M的线段树进行查询和更新操作,总复杂度为 O ( N log ⁡ M ) \mathcal{O}(N \log M) O(NlogM). 以下为code:

复制代码
class Solution {
public:

    void update(vector<int>& tree, int v, int tl, int tr, int pos, int new_val) {
        if (tl == tr) {
            tree[v] = max(new_val, tree[v]);
        } else {
            int tm = (tl + tr) / 2;
            if (pos <= tm)
                update(tree, v*2, tl, tm, pos, new_val);
            else
                update(tree, v*2+1, tm+1, tr, pos, new_val);
            tree[v] = max(tree[v*2], tree[v*2+1]);
        }
    }

    int get(vector<int>& tree, int v, int tl, int tr, int l, int r) {
        if (l > r) return 0;
        if (tl == l && tr == r) return tree[v];

        int tm = (tl + tr) / 2;
        return max(
            get(tree, v*2,   tl,   tm, l, min(tm, r)),
            get(tree, v*2+1, tm+1, tr, max(tm+1, l), r)
        );
    }

    int lengthOfLIS(vector<int>& nums, int k) {
        vector<int> tree(400000, 0);
        for (auto it = nums.begin(); it != nums.end(); ++it) {
            int sub = get(tree, 1, 1, 100000, max(1,(*it)-k), (*it)-1);
            update(tree, 1, 1, 100000, *it, sub+1);
        }
        return tree[1];
    }
};
相关推荐
聚客AI9 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v11 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工13 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农15 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了15 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo16 小时前
322:零钱兑换(三种方法)
算法
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法