Leetcode 2407. Longest Increasing Subsequence II

Leetcode 2407. Longest Increasing Subsequence II

You are given an integer array nums and an integer k.

Find the longest subsequence of nums that meets the following requirements:>

复制代码
1. The subsequence is strictly increasing and
2. The difference between adjacent elements in the subsequence is at most k.

Return the length of the longest subsequence that meets the requirements.

A subsequence is an array that can be derived from another array by deleting some or no > > elements without changing the order of the remaining elements.

假设我们用一个数组 dp [ ] \text{dp}[] dp[]来存储以当前元素为结尾的最长递增子数列, 我们可以考虑对数组顺序循环,对每一个值 nums [ i ] \text{nums}[i] nums[i],满足constraint: j < i , nums [ j ] + k > = nums [ i ] j < i, \text{nums}[j] + k >= \text{nums}[i] j<i,nums[j]+k>=nums[i]的条件所有 j j j,求 max ⁡ dp [ j ] \max \text{dp}[j] maxdp[j]。

max ⁡ j < i dp [ j ] s . t . nums [ j ] + k > = nums [ i ] \max_{j < i}\text{dp}[j] \quad s.t. \text{nums}[j] + k >= \text{nums}[i] j<imaxdp[j]s.t.nums[j]+k>=nums[i]

为了解这个问题,我们可以构造一个线段树 tree \text{tree} tree,其index可以表示 nums [ ] \text{nums}[] nums[]中的元素值的范围,对应value表示以该元素范围为结尾的最长递增子序列,那么在循环中我们只要查询 tree [ nums [ j ] − k : nums [ j ] − 1 ] \text{tree}[\text{nums}[j]-k : \text{nums}[j]-1] tree[nums[j]−k:nums[j]−1] 即可。这样的时间复杂度相当于扫一遍长度为 N N N的数组 nums \texttt{nums} nums,每次对最大数值范围为 M M M的线段树进行查询和更新操作,总复杂度为 O ( N log ⁡ M ) \mathcal{O}(N \log M) O(NlogM). 以下为code:

复制代码
class Solution {
public:

    void update(vector<int>& tree, int v, int tl, int tr, int pos, int new_val) {
        if (tl == tr) {
            tree[v] = max(new_val, tree[v]);
        } else {
            int tm = (tl + tr) / 2;
            if (pos <= tm)
                update(tree, v*2, tl, tm, pos, new_val);
            else
                update(tree, v*2+1, tm+1, tr, pos, new_val);
            tree[v] = max(tree[v*2], tree[v*2+1]);
        }
    }

    int get(vector<int>& tree, int v, int tl, int tr, int l, int r) {
        if (l > r) return 0;
        if (tl == l && tr == r) return tree[v];

        int tm = (tl + tr) / 2;
        return max(
            get(tree, v*2,   tl,   tm, l, min(tm, r)),
            get(tree, v*2+1, tm+1, tr, max(tm+1, l), r)
        );
    }

    int lengthOfLIS(vector<int>& nums, int k) {
        vector<int> tree(400000, 0);
        for (auto it = nums.begin(); it != nums.end(); ++it) {
            int sub = get(tree, 1, 1, 100000, max(1,(*it)-k), (*it)-1);
            update(tree, 1, 1, 100000, *it, sub+1);
        }
        return tree[1];
    }
};
相关推荐
中國龍在廣州6 分钟前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
快手技术7 分钟前
NeurIPS 2025 | 可灵团队提出 Flow-GRPO, 首次将在线强化学习引入流匹配生成模型
算法
星释20 分钟前
Rust 练习册 67:自定义集合与数据结构实现
数据结构·算法·rust
前端小L1 小时前
图论专题(十九):DAG上的“关键路径”——极限规划「并行课程 III」
算法·矩阵·深度优先·图论·宽度优先
scx201310042 小时前
20251116 树状DP总结
算法·深度优先·图论
Aspect of twilight2 小时前
LeetCode华为大模型岗刷题
python·leetcode·华为·力扣·算法题
2301_807997382 小时前
代码随想录-day47
数据结构·c++·算法·leetcode
Elias不吃糖2 小时前
LeetCode每日一练(3)
c++·算法·leetcode
小龙报2 小时前
《算法通关指南数据结构和算法篇(2)--- 链表专题》
c语言·数据结构·c++·算法·链表·学习方法·visual studio
艾莉丝努力练剑3 小时前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和