Leetcode 2407. Longest Increasing Subsequence II

Leetcode 2407. Longest Increasing Subsequence II

You are given an integer array nums and an integer k.

Find the longest subsequence of nums that meets the following requirements:>

复制代码
1. The subsequence is strictly increasing and
2. The difference between adjacent elements in the subsequence is at most k.

Return the length of the longest subsequence that meets the requirements.

A subsequence is an array that can be derived from another array by deleting some or no > > elements without changing the order of the remaining elements.

假设我们用一个数组 dp [ ] \text{dp}[] dp[]来存储以当前元素为结尾的最长递增子数列, 我们可以考虑对数组顺序循环,对每一个值 nums [ i ] \text{nums}[i] nums[i],满足constraint: j < i , nums [ j ] + k > = nums [ i ] j < i, \text{nums}[j] + k >= \text{nums}[i] j<i,nums[j]+k>=nums[i]的条件所有 j j j,求 max ⁡ dp [ j ] \max \text{dp}[j] maxdp[j]。

max ⁡ j < i dp [ j ] s . t . nums [ j ] + k > = nums [ i ] \max_{j < i}\text{dp}[j] \quad s.t. \text{nums}[j] + k >= \text{nums}[i] j<imaxdp[j]s.t.nums[j]+k>=nums[i]

为了解这个问题,我们可以构造一个线段树 tree \text{tree} tree,其index可以表示 nums [ ] \text{nums}[] nums[]中的元素值的范围,对应value表示以该元素范围为结尾的最长递增子序列,那么在循环中我们只要查询 tree [ nums [ j ] − k : nums [ j ] − 1 ] \text{tree}[\text{nums}[j]-k : \text{nums}[j]-1] tree[nums[j]−k:nums[j]−1] 即可。这样的时间复杂度相当于扫一遍长度为 N N N的数组 nums \texttt{nums} nums,每次对最大数值范围为 M M M的线段树进行查询和更新操作,总复杂度为 O ( N log ⁡ M ) \mathcal{O}(N \log M) O(NlogM). 以下为code:

复制代码
class Solution {
public:

    void update(vector<int>& tree, int v, int tl, int tr, int pos, int new_val) {
        if (tl == tr) {
            tree[v] = max(new_val, tree[v]);
        } else {
            int tm = (tl + tr) / 2;
            if (pos <= tm)
                update(tree, v*2, tl, tm, pos, new_val);
            else
                update(tree, v*2+1, tm+1, tr, pos, new_val);
            tree[v] = max(tree[v*2], tree[v*2+1]);
        }
    }

    int get(vector<int>& tree, int v, int tl, int tr, int l, int r) {
        if (l > r) return 0;
        if (tl == l && tr == r) return tree[v];

        int tm = (tl + tr) / 2;
        return max(
            get(tree, v*2,   tl,   tm, l, min(tm, r)),
            get(tree, v*2+1, tm+1, tr, max(tm+1, l), r)
        );
    }

    int lengthOfLIS(vector<int>& nums, int k) {
        vector<int> tree(400000, 0);
        for (auto it = nums.begin(); it != nums.end(); ++it) {
            int sub = get(tree, 1, 1, 100000, max(1,(*it)-k), (*it)-1);
            update(tree, 1, 1, 100000, *it, sub+1);
        }
        return tree[1];
    }
};
相关推荐
杰克尼21 分钟前
1. 两数之和 (leetcode)
数据结构·算法·leetcode
YuTaoShao1 小时前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展
二进制person5 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6666 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way6 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战8 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689769 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju9 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手10 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理