深度学习系列54:使用 MMDETECTION 和 LABEL-STUDIO 进行半自动化目标检测标注

参考https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/label_studio.html,这里进行简要概述:

1. 启动目标检测服务

在mmdetection文件夹中,执行

复制代码
label-studio-ml start projects/LabelStudio/backend_template --with \
config_file=configs/rtmdet/rtmdet_m_8xb32-300e_coco.py \
checkpoint_file=...pth \
device=cpu \
--port 8003

2. 启动labelstudio

另开一个terminal,执行

复制代码
label-studio start

打开浏览器访问 http://localhost:8080/ ,建立一个新项目。此时不要着急save,需要先点击后面的Labeling Setup连接第一步的目标检测服务

3. 连接服务

按照如图顺序点击


看到如下 Connected 就说明后端推理服务添加成功。

相关推荐
墨染点香9 分钟前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go54631584659 分钟前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙15 分钟前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华17 分钟前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼1 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
AIGC_北苏1 小时前
让UV管理一切!!!
linux·人工智能·uv
吕永强3 小时前
人工智能与环境:守护地球的智能防线
人工智能·科普
兮℡檬,3 小时前
房价预测|Pytorch
人工智能·pytorch·python