深度学习领域中的耦合与解耦

在阅读论文的时候应该会看到两个操作,一个是耦合,一个是解耦,经常搭配着出现的就是两个词语,耦合头(Coupled head)以及Decoupled head(解耦合头),那为什么要耦合,又为什么要解耦。

耦的概念

以下是来自耦的词语百科

耦耕(两人并力一起耕种。为古代犁田的一种方式);耦犁(一种耕作法)。引申为二人一组。

可见,耦的基础含义是共同为某一目标同时作用,再看Coupled和Decoupled这俩单词,是不是觉得耦合和解耦这俩翻译很精妙呢。

同时在知乎某文章中,也很通俗易懂的阐述了耦合与解耦的区别:通俗地理解耦合、解耦这两个概念 - 知乎

深度学习中耦合与解耦的作用

在论文《An Integrated Model for On-Site Teaching Quality Evaluation Based on Deep Learning》中有一张简洁明了的图表面了深度学习中耦合和解耦的区别;

**在目标检测中,分类任务和回归任务之间的冲突是不可避免的。因此,用于分类和定位的解耦合头被广泛用于大多数单阶段检测器。**YOLO系列的骨干网络和特征金字塔网络在不断发展,但检测头仍然是耦合的。对于每一级FPN特征,首先通过1×1卷积归一化激活函数进行特征积分,以将特征通道的数量减少到256个。然后分别为分类和回归任务添加两个并行分支(如图2所示)。每个分支有两个3×3卷积归一化激活函数用于特征提取。Cls分支通过1×1卷积来确定输入特征点的类型。另一个分支也分为两个平行的分支。其中,Reg分支通过1×1卷积获得特征点的回归系数,以调整预测帧;并且Obj分支通过1×1卷积来确定特征点是否具有对应的对象。实验表明,将耦合头替换为解耦头大大提高了收敛速度,而解耦合头对于端到端版本的YOLO至关重要。

相关推荐
Jay Kay32 分钟前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio36 分钟前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و1 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳1 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
在美的苦命程序员1 小时前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
kngines1 小时前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_071 小时前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全1 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王1 小时前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票