ChatGLM2 大模型微调过程中遇到的一些坑及解决方法(更新中)

1. 模型下载问题

复制代码
OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like bert-base-uncased is not the path to a directory containing a file named config.json.
Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.

模型默认是从huggingface上下载的,需要科学上网。挂上梯子后即可下载,注意模型都帮你较大,会消耗很多流量。

2. 模型保存地址

下载后,会占用C盘大量空间,对于重复下载的模型文件,可以进行删除。以下是其存储路径。

Windows系统
复制代码
C:\Users\你的用户名\.cache\huggingface
Linux系统
复制代码
       ~/.cache/huggingface/
3. 模型无法量化

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:

python 复制代码
model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).cuda()
peft_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, inference_mode=False,
    r=8,
    lora_alpha=32, lora_dropout=0.1,
)

model = get_peft_model(model, peft_config)

出现以下错误:

复制代码
ValueError: Target module QuantizedLinear() is not supported. Currently, only `torch.nn.Linear` and `Conv1D` are supported.

原因:以int4量化加载的模型是不支持进行微调的。

4. 分词器

以chatglm为例,有"chatglm2-6b" "chatglm2-6b-int8" "chatglm2-6b-int4" 三个版本,但是分词器tokenizer是共用的,不受模型量化加载方式改变。所以我们在加载tokenizer的时候,只需设置就可以了:

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
5. int-8量化的模型无法下载

在chatglm第一版里面,是提供int4 int8和fp16,三个版本的文件的,但是在chatglm2里,可以看到只给了fp16和int4两个版本的文件。

相关推荐
serve the people11 分钟前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_199311 分钟前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥13 分钟前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥15 分钟前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi
Leinwin17 分钟前
Microsoft 365 Copilot:更“懂你”的AI助手
人工智能·microsoft·copilot
后端小肥肠23 分钟前
从图文到视频,如何用Coze跑通“小红书儿童绘本”的商业闭环?
人工智能·aigc·coze
飞睿科技28 分钟前
ESP Audio Effects音频库迎来专业升级,v1.2.0 新增动态控制核心
人工智能·物联网·ffmpeg·智能家居·语音识别·乐鑫科技·esp
reddingtons34 分钟前
PS 参考图像:线稿上色太慢?AI 3秒“喂”出精细厚涂
前端·人工智能·游戏·ui·aigc·游戏策划·游戏美术
西格电力科技43 分钟前
光伏四可“可观”功能:光伏电站全景数字化的底层支撑技术
大数据·人工智能·架构·能源
VertGrow AI销冠1 小时前
2025年高口碑Ai获客系统软件TOP3推荐榜单
人工智能