ChatGLM2 大模型微调过程中遇到的一些坑及解决方法(更新中)

1. 模型下载问题

复制代码
OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like bert-base-uncased is not the path to a directory containing a file named config.json.
Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.

模型默认是从huggingface上下载的,需要科学上网。挂上梯子后即可下载,注意模型都帮你较大,会消耗很多流量。

2. 模型保存地址

下载后,会占用C盘大量空间,对于重复下载的模型文件,可以进行删除。以下是其存储路径。

Windows系统
复制代码
C:\Users\你的用户名\.cache\huggingface
Linux系统
复制代码
       ~/.cache/huggingface/
3. 模型无法量化

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:

python 复制代码
model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).cuda()
peft_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, inference_mode=False,
    r=8,
    lora_alpha=32, lora_dropout=0.1,
)

model = get_peft_model(model, peft_config)

出现以下错误:

复制代码
ValueError: Target module QuantizedLinear() is not supported. Currently, only `torch.nn.Linear` and `Conv1D` are supported.

原因:以int4量化加载的模型是不支持进行微调的。

4. 分词器

以chatglm为例,有"chatglm2-6b" "chatglm2-6b-int8" "chatglm2-6b-int4" 三个版本,但是分词器tokenizer是共用的,不受模型量化加载方式改变。所以我们在加载tokenizer的时候,只需设置就可以了:

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
5. int-8量化的模型无法下载

在chatglm第一版里面,是提供int4 int8和fp16,三个版本的文件的,但是在chatglm2里,可以看到只给了fp16和int4两个版本的文件。

相关推荐
咚咚王者2 分钟前
人工智能之核心基础 机器学习 第四章 决策树与集成学习基础
人工智能·决策树·机器学习
迈火5 分钟前
ComfyUI - ELLA:解锁ComfyUI图像生成新境界的神奇插件
人工智能·gpt·stable diffusion·aigc·音视频·midjourney·llama
sandwu5 分钟前
AI Agent——可观测性链路集成&评测体系搭建(Langfuse)
人工智能·python·langchain·langfuse
未来之窗软件服务11 分钟前
幽冥大陆(八十四)Python 水果识别PTH 转 ONNX 脚本新 —东方仙盟练气期
人工智能·python·深度学习·仙盟创梦ide·东方仙盟·阿雪技术观
AI科技星23 分钟前
时空的固有脉动:波动方程 ∇²L = (1/c²) ∂²L/∂t² 的第一性原理推导、诠释与验证
数据结构·人工智能·算法·机器学习·重构
金井PRATHAMA25 分钟前
格雷马斯语义方阵对人工智能自然语言处理深层语义分析的影响与启示研究
人工智能·自然语言处理
Coder个人博客35 分钟前
Transformers推理管道系统深度分析
人工智能·自动驾驶·transformer
nwsuaf_huasir37 分钟前
采用梯度下降法优化波形的自相关特性
人工智能·计算机视觉·目标跟踪
长河_讲_ITIL41 小时前
在硅基的倒影中寻找自我:写在AI智能体元年的一场思想突围
运维·人工智能·itss·itil·itil认证·itil培训
中國龍在廣州1 小时前
谈谈2025年人工智能现状及发展趋势分析
人工智能·深度学习·算法·自然语言处理·chatgpt·机器人·机器人学习