Pandas数据清洗_Python数据分析与可视化

Pandas数据清洗

在处理数据的时候,需要对数据进行一个清洗过程。清洗操作包括:空白行的删除、数据完整性检验、数据填充、插值等内容。

下面是数据清洗过程中使用的具体方法

删除缺失值

DataFrame.dropna 方法用于删除含有缺失值的行或列,关键参数:axishow

axis

表示轴向,0 为行,1 为列,默认 0。

how

表示删除形式,how = 'any' 表示只要有缺失值就删除;how='all' 表示全为缺失值才删除。

检测缺失值

DataFrame.isnull() 识别缺失值,返回包含TrueFalse的 DataFrame。
DataFrame.notnull() 方法识别非缺失值,返回包含TrueFalse的 DataFrame。

上述两方法结合sum函数可用于检测数据序列中缺失值的分布情况。

填充缺失值

DataFrame.fillna 方法能用指定值替换缺失值。关键参数:valuemethodaxis

value

表示指定的填充值。

method
method = 'bfill'后向填充,用后面的非缺失值填充;
method = 'ffill'前向填充,用前面的非缺失值填充。

axis

表示操作轴向,默认1(列)。

拉格朗日插值

csharp 复制代码
from scipy.interpolate import lagrange
formula = lagrange(x,y)#formula是通过lagrange方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。

线性插值

csharp 复制代码
from scipy.interpolate import interp1d#1是数字一
formula = interp1d(x,y,kind = 'linear')#formula是通过linear方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。
相关推荐
BoBoZz1917 分钟前
MotionBlur 演示简单运动模糊
python·vtk·图形渲染·图形处理
十八度的天空37 分钟前
第01节 Python的基础语法
开发语言·python
BoBoZz1937 分钟前
GradientBackground 比较不同类型的背景渐变着色模式与坐标转换
python·vtk·图形渲染·图形处理
540_54044 分钟前
ADVANCE Day32
人工智能·python·机器学习
STLearner1 小时前
AAAI 2026 | 图基础模型(GFM)&文本属性图(TAG)高分论文
人工智能·python·深度学习·神经网络·机器学习·数据挖掘·图论
小北方城市网1 小时前
Python + 前后端全栈进阶课程(共 10 节|完整版递进式|从技术深化→项目落地→就业进阶,无缝衔接基础课)
大数据·开发语言·网络·python·数据库架构
nvd111 小时前
故障排查:Pytest Asyncio Event Loop Closed 错误
python
deephub2 小时前
Lux 上手指南:让 AI 直接操作你的电脑
人工智能·python·大语言模型·agent
Channing Lewis2 小时前
Python读取excel转成html,并且复制excel中单元格的颜色(字体或填充)
python·html·excel
小钟不想敲代码2 小时前
Python(一)
开发语言·python