Pandas数据清洗_Python数据分析与可视化

Pandas数据清洗

在处理数据的时候,需要对数据进行一个清洗过程。清洗操作包括:空白行的删除、数据完整性检验、数据填充、插值等内容。

下面是数据清洗过程中使用的具体方法

删除缺失值

DataFrame.dropna 方法用于删除含有缺失值的行或列,关键参数:axishow

axis

表示轴向,0 为行,1 为列,默认 0。

how

表示删除形式,how = 'any' 表示只要有缺失值就删除;how='all' 表示全为缺失值才删除。

检测缺失值

DataFrame.isnull() 识别缺失值,返回包含TrueFalse的 DataFrame。
DataFrame.notnull() 方法识别非缺失值,返回包含TrueFalse的 DataFrame。

上述两方法结合sum函数可用于检测数据序列中缺失值的分布情况。

填充缺失值

DataFrame.fillna 方法能用指定值替换缺失值。关键参数:valuemethodaxis

value

表示指定的填充值。

method
method = 'bfill'后向填充,用后面的非缺失值填充;
method = 'ffill'前向填充,用前面的非缺失值填充。

axis

表示操作轴向,默认1(列)。

拉格朗日插值

csharp 复制代码
from scipy.interpolate import lagrange
formula = lagrange(x,y)#formula是通过lagrange方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。

线性插值

csharp 复制代码
from scipy.interpolate import interp1d#1是数字一
formula = interp1d(x,y,kind = 'linear')#formula是通过linear方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。
相关推荐
没有梦想的咸鱼185-1037-16631 分钟前
土壤污染物迁移路径与范围模拟(适用于污染场地评估、修复工程、地下水保护)
数据分析
叫我:松哥2 分钟前
基于django的新能源汽车租赁推荐分析系统,包括用户、商家、管理员三个角色,协同过滤+基于内容、用户画像的融合算法推荐
python·算法·机器学习·pycharm·django·汽车·echarts
艾莉丝努力练剑4 分钟前
艾莉丝努力练剑的2025年度总结
java·大数据·linux·开发语言·c++·人工智能·python
2501_944452238 小时前
字数统计 Cordova 与 OpenHarmony 混合开发实战
python
骚戴8 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
kobe_OKOK_9 小时前
tdeinge REST API 客户端
python·缓存·django
io_T_T9 小时前
Python os库 os.walk使用(详细教程、带实践)
python
TonyLee01710 小时前
使用argparse模块以及shell脚本
python
Blossom.11810 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
love530love12 小时前
Windows 11 下 Z-Image-Turbo 完整部署与 Flash Attention 2.8.3 本地编译复盘
人工智能·windows·python·aigc·flash-attn·z-image·cuda加速