Pandas数据清洗_Python数据分析与可视化

Pandas数据清洗

在处理数据的时候,需要对数据进行一个清洗过程。清洗操作包括:空白行的删除、数据完整性检验、数据填充、插值等内容。

下面是数据清洗过程中使用的具体方法

删除缺失值

DataFrame.dropna 方法用于删除含有缺失值的行或列,关键参数:axishow

axis

表示轴向,0 为行,1 为列,默认 0。

how

表示删除形式,how = 'any' 表示只要有缺失值就删除;how='all' 表示全为缺失值才删除。

检测缺失值

DataFrame.isnull() 识别缺失值,返回包含TrueFalse的 DataFrame。
DataFrame.notnull() 方法识别非缺失值,返回包含TrueFalse的 DataFrame。

上述两方法结合sum函数可用于检测数据序列中缺失值的分布情况。

填充缺失值

DataFrame.fillna 方法能用指定值替换缺失值。关键参数:valuemethodaxis

value

表示指定的填充值。

method
method = 'bfill'后向填充,用后面的非缺失值填充;
method = 'ffill'前向填充,用前面的非缺失值填充。

axis

表示操作轴向,默认1(列)。

拉格朗日插值

csharp 复制代码
from scipy.interpolate import lagrange
formula = lagrange(x,y)#formula是通过lagrange方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。

线性插值

csharp 复制代码
from scipy.interpolate import interp1d#1是数字一
formula = interp1d(x,y,kind = 'linear')#formula是通过linear方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。
相关推荐
Swizard6 小时前
别再让你的 Python 傻等了:三分钟带你通过 asyncio 实现性能起飞
python
Darkershadow8 小时前
python学习之串口通信
python·学习
3824278278 小时前
python:输出JSON
前端·python·json
也许是_9 小时前
大模型应用技术之 详解 MCP 原理
人工智能·python
SelectDB9 小时前
Doris Catalog 已上线!性能提升 200x,全面优于 JDBC Catalog,跨集群查询迈入高性能分析时代
数据库·数据分析·apache
沙漠豪9 小时前
提取PDF发票信息的Python脚本
开发语言·python·pdf
F_D_Z11 小时前
【Python】家庭用电数据的时序分析
python·数据分析·时序分析·序列分解
a程序小傲11 小时前
蚂蚁Java面试被问:注解的工作原理及如何自定义注解
java·开发语言·python·面试
love530love11 小时前
【笔记】ComfyUI “OSError: [WinError 38] 已到文件结尾” 报错解决方案
人工智能·windows·python·aigc·comfyui·winerror 38