分类问题的评价指标

一、logistic regression

logistic regression也叫做对数几率回归。虽然名字是回归,但是不同于linear regression,logistic regression是一种分类学习方法。

同时在深度神经网络中,有一种线性层的输出也叫做logistic,他是被输入到激活函数中的输入如下图所示。

Softmax和sigmoid的输出不同,sigmoid输出的是每一个种类成为

二、分类算法的评价指标 <分类算法评价指标详解 - 知乎>

首先,机器学习分类任务的常用评价指标:混淆矩阵(Confuse Matrix)、准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 Score、P-R曲线(Precision-Recall Curve)、ROC、AUC。

混淆矩阵:每行显示样本预测到的值,列显示标签的值。针对一个二分类问题,可以将其分为四种

TP:True Positive 表示真的正类

TN:True Negative 真的负类

FP:False Positive 假的正类

FN:False Negative 假的负类 这些都可以从混淆矩阵中得出。

1.准确率 Accuracy

Acc=(TP+TN)/(TP+TN+FP+FN)

预测结果中的所有预测争取的类别比左右的预测结果。即混淆矩阵对角元素和所有元素的比值。

准确率有一个缺点,就是数据的样本不均衡,这个指标是不能评价模型的性能优劣的。

假如一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

2.精确度precision

在模型预测为正样本的结果中,真正是正样本所占的百分比,具体公式如下:

Pre = TP / (TP+TF)

在预测为正样本的结果中,真的正样品的占比。

3.召回率recall

在实际正样本中,预测为真的正样本占所有正样本的比值

Recall= TP / (TP+TN)

4.F1 sore

Recall和precision之间会有一个此消彼长的关系,如果要兼顾二者,就需要F1 Score,F1 Score是一种调和平均数。

F1 Score = (2*Pre*Recall)/ (Pre+Recall)

同时还有一种,P-R曲线(precision -Recall)描述精确率和召回率变化。

模型与坐标轴围成的面积越大,则模型的性能越好。但一般来说,曲线下的面积是很难进行估算的,所以衍生出了"平衡点"(Break-Event Point,简称BEP),即当P=R时的取值,平衡点的取值越高,性能更优。

线性回归模型和logistic回归模型

相关推荐
sali-tec15 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明15 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
罗西的思考16 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
人邮异步社区17 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
xiangzhihong817 小时前
使用 Trae IDE 一键将 Figma 转为前端代码
机器学习
深度学习实战训练营17 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习
哥布林学者17 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (一)经典卷积网络
深度学习·ai
Coding茶水间17 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
露临霜18 小时前
重启机器学习
人工智能·机器学习
IT·小灰灰18 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算