分类问题的评价指标

一、logistic regression

logistic regression也叫做对数几率回归。虽然名字是回归,但是不同于linear regression,logistic regression是一种分类学习方法。

同时在深度神经网络中,有一种线性层的输出也叫做logistic,他是被输入到激活函数中的输入如下图所示。

Softmax和sigmoid的输出不同,sigmoid输出的是每一个种类成为

二、分类算法的评价指标 <分类算法评价指标详解 - 知乎>

首先,机器学习分类任务的常用评价指标:混淆矩阵(Confuse Matrix)、准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 Score、P-R曲线(Precision-Recall Curve)、ROC、AUC。

混淆矩阵:每行显示样本预测到的值,列显示标签的值。针对一个二分类问题,可以将其分为四种

TP:True Positive 表示真的正类

TN:True Negative 真的负类

FP:False Positive 假的正类

FN:False Negative 假的负类 这些都可以从混淆矩阵中得出。

1.准确率 Accuracy

Acc=(TP+TN)/(TP+TN+FP+FN)

预测结果中的所有预测争取的类别比左右的预测结果。即混淆矩阵对角元素和所有元素的比值。

准确率有一个缺点,就是数据的样本不均衡,这个指标是不能评价模型的性能优劣的。

假如一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

2.精确度precision

在模型预测为正样本的结果中,真正是正样本所占的百分比,具体公式如下:

Pre = TP / (TP+TF)

在预测为正样本的结果中,真的正样品的占比。

3.召回率recall

在实际正样本中,预测为真的正样本占所有正样本的比值

Recall= TP / (TP+TN)

4.F1 sore

Recall和precision之间会有一个此消彼长的关系,如果要兼顾二者,就需要F1 Score,F1 Score是一种调和平均数。

F1 Score = (2*Pre*Recall)/ (Pre+Recall)

同时还有一种,P-R曲线(precision -Recall)描述精确率和召回率变化。

模型与坐标轴围成的面积越大,则模型的性能越好。但一般来说,曲线下的面积是很难进行估算的,所以衍生出了"平衡点"(Break-Event Point,简称BEP),即当P=R时的取值,平衡点的取值越高,性能更优。

线性回归模型和logistic回归模型

相关推荐
千宇宙航2 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董2 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco2 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟3 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
jndingxin5 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
天水幼麟5 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
晨同学03276 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿6 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手6 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界7 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm