YOLOv5 环境搭建

YOLOv5 环境搭建

flyfish

环境

Ubuntu20.04

驱动、CUDA Toolkit、cuDNN、PyTorch版本对应

1 NVIDIA驱动安装

在[附加驱动界]面安装驱动时,需要输入安全密码,需要记下,后面还需要输入这个密码

重启之后有的机器会出现

perform mok management

操作步骤

复制代码
enroll mok 
enroll mok -> continue 
enroll the key -> yes 

输入安全密码 reboot

2 CUDA Toolkit 安装

https://developer.nvidia.com/cuda-toolkit-archive

如果驱动已经安装,在这里可以不安装驱动

3 cuDNN 安装

https://developer.nvidia.com/rdp/cudnn-archive

查看GPU信息

复制代码
nvidia-smi

System Management Interface

复制代码
https://developer.nvidia.com/nvidia-system-management-interface

4 python环境

(1)anaconda方式

界面启动

复制代码
anaconda-navigator

使用国内源

复制代码
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/

运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

创建虚拟环境

复制代码
conda create -n  yolov5

激活虚拟环境

复制代码
conda activate yolov5

退出conda环境

复制代码
conda deactivate

(2)python虚拟环境方式

复制代码
sudo apt-get install python3-venv

# 配置国内源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

#创建虚拟环境
python3 -m venv  yolov5

#激活虚拟环境
cd venv_name
source bin/activate

# pip 升级
pip install --upgrade pip

#退出激活环境
deactivate

5 PyTorch安装

复制代码
https://pytorch.org/get-started/locally/

6 Yolov5的安装

下载源码

复制代码
https://github.com/ultralytics/yolov5

在自己的环境,进入代码目录

执行

复制代码
pip install -r requirements.txt
相关推荐
、、、、南山小雨、、、、10 小时前
YOLO在ubuntu22安装
yolo
羊羊小栈14 小时前
基于「YOLO目标检测 + 多模态AI分析」的铁路轨道缺陷检测安全系统(vue+flask+数据集+模型训练)
人工智能·yolo·目标检测·语言模型·毕业设计·创业创新·大作业
Python图像识别1 天前
63_基于深度学习的草莓病害检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
范男1 天前
YOLO11目标检测运行推理简约GUI界面
图像处理·人工智能·yolo·计算机视觉·视觉检测
model20051 天前
ubuntu24.04+5070ti训练yolo模型(2)
人工智能·yolo
强盛小灵通专卖员1 天前
RK3576边缘计算设备部署YOLOv11
人工智能·深度学习·yolo·边缘计算·sci·rk3576·小论文
chenzhiyuan20182 天前
YOLO + OpenPLC + ARMxy:工业智能化视觉识别、边缘计算、工业控制的“三位一体”解决方案
人工智能·yolo·边缘计算
猫天意2 天前
【CVPR2025-DEIM】基础课程二十:顶会中的Partial创新思想,随意包装你想包装的!
图像处理·人工智能·yolo·计算机视觉·matlab
dragon_perfect3 天前
全流程基于Yolov8实现在Label-Studio实现半自动标注,已经把整个流程理清楚,把所有的坑解决。
开发语言·python·yolo·labelstudio