YOLOv5 环境搭建

YOLOv5 环境搭建

flyfish

环境

Ubuntu20.04

驱动、CUDA Toolkit、cuDNN、PyTorch版本对应

1 NVIDIA驱动安装

在[附加驱动界]面安装驱动时,需要输入安全密码,需要记下,后面还需要输入这个密码

重启之后有的机器会出现

perform mok management

操作步骤

复制代码
enroll mok 
enroll mok -> continue 
enroll the key -> yes 

输入安全密码 reboot

2 CUDA Toolkit 安装

https://developer.nvidia.com/cuda-toolkit-archive

如果驱动已经安装,在这里可以不安装驱动

3 cuDNN 安装

https://developer.nvidia.com/rdp/cudnn-archive

查看GPU信息

复制代码
nvidia-smi

System Management Interface

复制代码
https://developer.nvidia.com/nvidia-system-management-interface

4 python环境

(1)anaconda方式

界面启动

复制代码
anaconda-navigator

使用国内源

复制代码
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/

运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

创建虚拟环境

复制代码
conda create -n  yolov5

激活虚拟环境

复制代码
conda activate yolov5

退出conda环境

复制代码
conda deactivate

(2)python虚拟环境方式

复制代码
sudo apt-get install python3-venv

# 配置国内源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

#创建虚拟环境
python3 -m venv  yolov5

#激活虚拟环境
cd venv_name
source bin/activate

# pip 升级
pip install --upgrade pip

#退出激活环境
deactivate

5 PyTorch安装

复制代码
https://pytorch.org/get-started/locally/

6 Yolov5的安装

下载源码

复制代码
https://github.com/ultralytics/yolov5

在自己的环境,进入代码目录

执行

复制代码
pip install -r requirements.txt
相关推荐
zy_destiny14 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
Mark White14 小时前
YOLOv3-tiny 网络结构浅析
yolo
Together_CZ15 小时前
ultralytics.nn.autobackend——autobackend.py子模块代码详读
yolo·目标检测·torch·ultralytics·autobackend·推理后端·多种模型支持
喵叔哟15 小时前
01-YOLO最新版到底新在哪
yolo
无人装备硬件开发爱好者16 小时前
RV1126B 边缘端 AI 实战:YOLOv8+DNTR 微小目标跟踪监测全栈实现 1
人工智能·yolo·目标跟踪
2501_9413220316 小时前
基于YOLOv8的汽车车损检测与评估系统_16种损伤类型识别
yolo·汽车
LASDAaaa123116 小时前
电力巡检实战:基于YOLOv8-SEG-P6的输电线路鸟类检测与识别技术详解
yolo
Piar1231sdafa17 小时前
YOLOv5-AIFI改进_爆炸物检测与识别系统_实现与应用
yolo
zy_destiny17 小时前
【工业场景】用YOLOv26实现4种输电线隐患检测
人工智能·深度学习·算法·yolo·机器学习·计算机视觉·输电线隐患识别
雍凉明月夜17 小时前
深度学习之目标检测yolo算法Ⅴ-YOLOv8
深度学习·yolo·目标检测