YOLOv5 环境搭建

YOLOv5 环境搭建

flyfish

环境

Ubuntu20.04

驱动、CUDA Toolkit、cuDNN、PyTorch版本对应

1 NVIDIA驱动安装

在[附加驱动界]面安装驱动时,需要输入安全密码,需要记下,后面还需要输入这个密码

重启之后有的机器会出现

perform mok management

操作步骤

复制代码
enroll mok 
enroll mok -> continue 
enroll the key -> yes 

输入安全密码 reboot

2 CUDA Toolkit 安装

https://developer.nvidia.com/cuda-toolkit-archive

如果驱动已经安装,在这里可以不安装驱动

3 cuDNN 安装

https://developer.nvidia.com/rdp/cudnn-archive

查看GPU信息

复制代码
nvidia-smi

System Management Interface

复制代码
https://developer.nvidia.com/nvidia-system-management-interface

4 python环境

(1)anaconda方式

界面启动

复制代码
anaconda-navigator

使用国内源

复制代码
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/

运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

创建虚拟环境

复制代码
conda create -n  yolov5

激活虚拟环境

复制代码
conda activate yolov5

退出conda环境

复制代码
conda deactivate

(2)python虚拟环境方式

复制代码
sudo apt-get install python3-venv

# 配置国内源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

#创建虚拟环境
python3 -m venv  yolov5

#激活虚拟环境
cd venv_name
source bin/activate

# pip 升级
pip install --upgrade pip

#退出激活环境
deactivate

5 PyTorch安装

复制代码
https://pytorch.org/get-started/locally/

6 Yolov5的安装

下载源码

复制代码
https://github.com/ultralytics/yolov5

在自己的环境,进入代码目录

执行

复制代码
pip install -r requirements.txt
相关推荐
加油加油的大力2 小时前
入门基于深度学习(以yolov8和unet为例)的计算机视觉领域的学习路线
深度学习·yolo·计算机视觉
小哥谈1 天前
论文解析篇 | YOLOv12:以注意力机制为核心的实时目标检测算法
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
向哆哆1 天前
YOLO在自动驾驶交通标志识别中的应用与优化【附代码】
人工智能·深度学习·yolo·自动驾驶·yolov8
zhangfeng11331 天前
机器学习 YOLOv5手绘电路图识别 手绘电路图自动转换为仿真软件(如LT Spice)可用的原理图,避免人工重绘
人工智能·yolo·机器学习
FL16238631292 天前
如何使用目标检测深度学习框架yolov8训练钢管管道表面缺陷VOC+YOLO格式1159张3类别的检测数据集步骤和流程
深度学习·yolo·目标检测
Dymc2 天前
【目标检测之Ultralytics预测框颜色修改】
人工智能·yolo·目标检测·计算机视觉
lianyinghhh2 天前
yolo8实现目标检测
yolo·目标检测·macos
灵智工坊LingzhiAI2 天前
基于YOLO的足球检测Web应用:从训练到部署的完整实战
yolo
飞天小女警momo2 天前
YOLO 模型 ONNX 导出与跨平台部署流程
yolo
19893 天前
【零基础学AI】第31讲:目标检测 - YOLO算法
人工智能·rnn·yolo·目标检测·tensorflow·lstm