【LeetCode】104. 二叉树的最大深度

104. 二叉树的最大深度

难度:简单

题目

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:

输入:root = [1,null,2]
输出:2

提示:

  • 树中节点的数量在 [0, 104] 区间内。
  • -100 <= Node.val <= 100

个人题解

方法一:递归

对于当前节点而言,高度等于左边高度及右边高度中的最高值+1,故递归取左边高度,再取右边高度,返回最大值+1即可。

java 复制代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
			if (root == null) {
				return 0;
			}
			int leftDepth = maxDepth(root.left);
			int rightDepth = maxDepth(root.right);
			return Math.max(leftDepth, rightDepth) + 1;
    }
}

官方题解

方法一:深度优先搜索

如果我们知道了左子树和右子树的最大深度 l 和 r , 那么该二叉树的最大深度即为 max(l, r) + 1

而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。

java 复制代码
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        } else {
            int leftHeight = maxDepth(root.left);
            int rightHeight = maxDepth(root.right);
            return Math.max(leftHeight, rightHeight) + 1;
        }
    }
}

复杂度分析

时间复杂度:O(n),其中 n 为二叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(height),其中 height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

方法二:广度优先搜索

我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量 ans 来维护拓展的次数,该二叉树的最大深度即为 ans。

java 复制代码
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        int ans = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size > 0) {
                TreeNode node = queue.poll();
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
                size--;
            }
            ans++;
        }
        return ans;
    }
}

复杂度分析

时间复杂度:O(n),其中 n 为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。

空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)

作者:力扣官方题解

链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree/solutions/349250/er-cha-shu-de-zui-da-shen-du-by-leetcode-solution/

来源:力扣(LeetCode)

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关推荐
Crossoads11 分钟前
【数据结构】排序算法---桶排序
c语言·开发语言·数据结构·算法·排序算法
自身就是太阳19 分钟前
2024蓝桥杯省B好题分析
算法·职场和发展·蓝桥杯
孙小二写代码42 分钟前
[leetcode刷题]面试经典150题之1合并两个有序数组(简单)
算法·leetcode·面试
little redcap1 小时前
第十九次CCF计算机软件能力认证-1246(过64%的代码-个人题解)
算法
David猪大卫1 小时前
数据结构修炼——顺序表和链表的区别与联系
c语言·数据结构·学习·算法·leetcode·链表·蓝桥杯
Iceberg_wWzZ1 小时前
数据结构(Day14)
linux·c语言·数据结构·算法
夏天天天天天天天#1 小时前
求Huffman树及其matlab程序详解
算法·matlab·图论
Infedium1 小时前
优数:助力更高效的边缘计算
算法·业界资讯
student.J2 小时前
傅里叶变换
python·算法·傅里叶
五味香2 小时前
C++学习,动态内存
java·c语言·开发语言·jvm·c++·学习·算法