动态规划:2304. 网格中的最小路径代价

2304. 网格中的最小路径代价

给你一个下标从 0 开始的整数矩阵 grid ,矩阵大小为 m x n ,由从 0m * n - 1 的不同整数组成。你可以在此矩阵中,从一个单元格移动到 下一行 的任何其他单元格。如果你位于单元格 (x, y) ,且满足 x < m - 1 ,你可以移动到 (x + 1, 0), (x + 1, 1), ..., (x + 1, n - 1)中的任何一个单元格。注意: 在最后一行中的单元格不能触发移动。

每次可能的移动都需要付出对应的代价,代价用一个下标从 0 开始的二维数组 moveCost 表示,该数组大小为 (m * n) x n ,其中 moveCost[i][j] 是从值为 i 的单元格移动到下一行第 j 列单元格的代价。从 grid 最后一行的单元格移动的代价可以忽略。

grid 一条路径的代价是:所有路径经过的单元格的 值之和 加上 所有移动的 代价之和 。从 第一行 任意单元格出发,返回到达 最后一行 任意单元格的最小路径代价*。*

dp[i][j] 已经表示到i行j列的最小代价。

i,j的位置可以从i-1,k转移而来,所以可以得到状态转移方程:

初始条件:dp[0][j] = grid[0][j]

转移方程:dp[i][j] = min(dp[i-1][k]) + moveCost[grid[i-1][k]][j]+grid[i][j];

结果:res = min dp[m-1][j]

cpp 复制代码
class Solution {
public:
    int minPathCost(vector<vector<int>>& grid, vector<vector<int>>& moveCost) {
        // dp[i][j] 已经表示到i行j列的最小代价
        // res = min dp[m-1][j]  // dp[0][j] = grid[0][j]
        // dp[i][j] = min(dp[i-1][k]) + moveCost[grid[i-1][k]][j]+grid[i][j];
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int>>dp(m,vector<int>(n,1000000));
        for(int i = 0;i<n;i++){
            dp[0][i] = grid[0][i];
        }
        int res=0x3f3f3f3f;
        for(int i=1;i<m;i++){
            for(int j=0;j<n;j++){
                for(int k=0;k<n;k++){
                    dp[i][j]=min(dp[i][j],dp[i-1][k]+moveCost[grid[i-1][k]][j]+grid[i][j]);
                }
            }
        }
        for(int i=0;i<n;i++){
            res=min(res,dp[m-1][i]);
        }
        return res;
    }
};
相关推荐
rit84324994 分钟前
基于MATLAB的环境障碍模型构建与蚁群算法路径规划实现
开发语言·算法·matlab
hoiii1878 分钟前
MATLAB SGM(半全局匹配)算法实现
前端·算法·matlab
独自破碎E14 分钟前
大整数哈希
算法·哈希算法
纤纡.19 分钟前
逻辑回归实战进阶:交叉验证与采样技术破解数据痛点(二)
算法·机器学习·逻辑回归
czhc114007566320 分钟前
协议 25
java·开发语言·算法
范纹杉想快点毕业31 分钟前
状态机设计与嵌入式系统开发完整指南从面向过程到面向对象,从理论到实践的全面解析
linux·服务器·数据库·c++·算法·mongodb·mfc
fish-man34 分钟前
测试加粗效果
算法
晓13131 小时前
第二章 【C语言篇:入门】 C 语言基础入门
c语言·算法
yong99901 小时前
MATLAB面波频散曲线反演程序
开发语言·算法·matlab
JicasdC123asd1 小时前
【工业检测】基于YOLO13-C3k2-EIEM的铸造缺陷检测与分类系统_1
人工智能·算法·分类