【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录

概要

透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。

透视变换通常涉及到寻找图像中的特定点集,这些点对应于真实场景中的特定位置。通过这些点的映射关系,可以计算出透视变换的矩阵,然后将整个图像进行变换。在实际应用中,透视变换常用于校准摄像头、图像矫正、虚拟增强现实等领域。

计算公式

一般来说,通用的图像变换公式如下所示:

上述公式中,u,v代表原始图像坐标,x,y为经过透视变换的图片坐标,其中变换矩阵为3X3形式。进而可以得到:

举个栗子

直观的来看,透视变换的作用就是将左侧图像的坐标点

\[50,0\],\[150,0\],\[0,200\],\[200,200\]

转化为新的坐标

\[0,0\],\[200,0\],\[0,200\],\[200,200\]

通过计算我们知道,转换矩阵如下

采用左上角的点(50,0)代入公式,

接着将列向量的前两维度除以第三维执行归一化:

所以原图左上角点执行透视变换后的映射关系:

实际应用

1)读入图像

首先我们来读入一副彩色图像,如下:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("image/sample.jpg")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数

2)挑选原图四个点

接着我们需要挑选四个点,我们这里采用左上,左下,右下和右上,下面的代码把我们挑选的四个点画到图像上.

bash 复制代码
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

3)显示图像:

bash 复制代码
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

完整代码:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上四个点标注位置不对,所以需要改变点的位置.

4)进行透视变换

首先选择四个目的图像上的点,然后调用openv函数进行透视变换.

bash 复制代码
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])
matrix = cv2.getPerspectiveTransform(pts1, pts2)
result = cv2.warpPerspective(img, matrix, (h, w))
cv2.imshow("Image", img)
cv2.imshow("Perspective transformation", result)
cv2.waitKey(0)

全部

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(81, 325), (105, 580), (590, 340), (480, 110)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

# 选择目标图像上的四个点
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])

# 计算透视变换矩阵
matrix = cv2.getPerspectiveTransform(pts1, pts2)

# 应用透视变换
result = cv2.warpPerspective(img, matrix, (w, h))  # 修正图像大小

# 显示原始图像、透视变换前后的图像
cv2.imshow("Original Image with Selected Points", img)
cv2.imshow("Perspective Transformation", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

小结

使用OpenCV中的透视变换的基本步骤:

找到四个特定的点:

在原始图像中选择四个特定的点,这四个点对应于一个矩形或者平行四边形在真实场景中的投影。

计算透视变换矩阵:

利用这四个点的映射关系,计算透视变换矩阵。OpenCV提供了 cv2.getPerspectiveTransform 函数来实现这一步骤。

应用透视变换:

利用计算得到的透视变换矩阵,对整个图像进行透视变换。OpenCV提供了 cv2.warpPerspective 函数用于执行透视变换。

相关推荐
xinyu_Jina13 小时前
FIRE之旅 财务计算器:金融独立模型中的复利可视化与敏感性分析
人工智能·程序人生·信息可视化·金融·程序员创富
mjhcsp13 小时前
C++ 三分查找:在单调与凸函数中高效定位极值的算法
开发语言·c++·算法
立志成为大牛的小牛13 小时前
数据结构——四十二、二叉排序树(王道408)
数据结构·笔记·程序人生·考研·算法
工藤学编程13 小时前
零基础学AI大模型之Milvus核心:分区-分片-段结构全解+最佳实践
人工智能·milvus
caijingshiye14 小时前
九科信息企业自动化智能体:打破知行割裂,让AI真正动手干活
运维·人工智能·自动化
鹿衔`14 小时前
Flask入门
后端·python·flask
码农很忙14 小时前
OpenAI GPT-5.1正式发布:智商情商双突破,开启AI交互新时代
人工智能
袁洛施14 小时前
Claude Code 深度解析:架构、工作原理与常见误解
人工智能·架构
fendouweiqian15 小时前
git提交与commitlint规则
git
Funny_AI_LAB15 小时前
李飞飞联合杨立昆发表最新论文:超感知AI模型从视频中“看懂”并“预见”三维世界
人工智能·算法·语言模型·音视频