【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录

概要

透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。

透视变换通常涉及到寻找图像中的特定点集,这些点对应于真实场景中的特定位置。通过这些点的映射关系,可以计算出透视变换的矩阵,然后将整个图像进行变换。在实际应用中,透视变换常用于校准摄像头、图像矫正、虚拟增强现实等领域。

计算公式

一般来说,通用的图像变换公式如下所示:

上述公式中,u,v代表原始图像坐标,x,y为经过透视变换的图片坐标,其中变换矩阵为3X3形式。进而可以得到:

举个栗子

直观的来看,透视变换的作用就是将左侧图像的坐标点

[[50,0],[150,0],[0,200],[200,200]]

转化为新的坐标

[[0,0],[200,0],[0,200],[200,200]]

通过计算我们知道,转换矩阵如下

采用左上角的点(50,0)代入公式,

接着将列向量的前两维度除以第三维执行归一化:

所以原图左上角点执行透视变换后的映射关系:

实际应用

1)读入图像

首先我们来读入一副彩色图像,如下:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("image/sample.jpg")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数

2)挑选原图四个点

接着我们需要挑选四个点,我们这里采用左上,左下,右下和右上,下面的代码把我们挑选的四个点画到图像上.

bash 复制代码
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

3)显示图像:

bash 复制代码
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

完整代码:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上四个点标注位置不对,所以需要改变点的位置.

4)进行透视变换

首先选择四个目的图像上的点,然后调用openv函数进行透视变换.

bash 复制代码
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])
matrix = cv2.getPerspectiveTransform(pts1, pts2)
result = cv2.warpPerspective(img, matrix, (h, w))
cv2.imshow("Image", img)
cv2.imshow("Perspective transformation", result)
cv2.waitKey(0)

全部

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(81, 325), (105, 580), (590, 340), (480, 110)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

# 选择目标图像上的四个点
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])

# 计算透视变换矩阵
matrix = cv2.getPerspectiveTransform(pts1, pts2)

# 应用透视变换
result = cv2.warpPerspective(img, matrix, (w, h))  # 修正图像大小

# 显示原始图像、透视变换前后的图像
cv2.imshow("Original Image with Selected Points", img)
cv2.imshow("Perspective Transformation", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

小结

使用OpenCV中的透视变换的基本步骤:

找到四个特定的点:

在原始图像中选择四个特定的点,这四个点对应于一个矩形或者平行四边形在真实场景中的投影。

计算透视变换矩阵:

利用这四个点的映射关系,计算透视变换矩阵。OpenCV提供了 cv2.getPerspectiveTransform 函数来实现这一步骤。

应用透视变换:

利用计算得到的透视变换矩阵,对整个图像进行透视变换。OpenCV提供了 cv2.warpPerspective 函数用于执行透视变换。

相关推荐
Hylan_J1 小时前
【VSCode】MicroPython环境配置
ide·vscode·python·编辑器
莫忘初心丶1 小时前
在 Ubuntu 22 上使用 Gunicorn 启动 Flask 应用程序
python·ubuntu·flask·gunicorn
427724001 小时前
IDEA使用git不提示账号密码登录,而是输入token问题解决
java·git·intellij-idea
计算机小白一个2 小时前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^2 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
牧歌悠悠3 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬4 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬4 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian4 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT4 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理