【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录

概要

透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。

透视变换通常涉及到寻找图像中的特定点集,这些点对应于真实场景中的特定位置。通过这些点的映射关系,可以计算出透视变换的矩阵,然后将整个图像进行变换。在实际应用中,透视变换常用于校准摄像头、图像矫正、虚拟增强现实等领域。

计算公式

一般来说,通用的图像变换公式如下所示:

上述公式中,u,v代表原始图像坐标,x,y为经过透视变换的图片坐标,其中变换矩阵为3X3形式。进而可以得到:

举个栗子

直观的来看,透视变换的作用就是将左侧图像的坐标点

[[50,0],[150,0],[0,200],[200,200]]

转化为新的坐标

[[0,0],[200,0],[0,200],[200,200]]

通过计算我们知道,转换矩阵如下

采用左上角的点(50,0)代入公式,

接着将列向量的前两维度除以第三维执行归一化:

所以原图左上角点执行透视变换后的映射关系:

实际应用

1)读入图像

首先我们来读入一副彩色图像,如下:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("image/sample.jpg")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数

2)挑选原图四个点

接着我们需要挑选四个点,我们这里采用左上,左下,右下和右上,下面的代码把我们挑选的四个点画到图像上.

bash 复制代码
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

3)显示图像:

bash 复制代码
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

完整代码:

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上四个点标注位置不对,所以需要改变点的位置.

4)进行透视变换

首先选择四个目的图像上的点,然后调用openv函数进行透视变换.

bash 复制代码
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])
matrix = cv2.getPerspectiveTransform(pts1, pts2)
result = cv2.warpPerspective(img, matrix, (h, w))
cv2.imshow("Image", img)
cv2.imshow("Perspective transformation", result)
cv2.waitKey(0)

全部

bash 复制代码
import cv2
import numpy as np

img = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(81, 325), (105, 580), (590, 340), (480, 110)]

# 在图像上标出四个点
for i, pt in enumerate(src_list):
    cv2.circle(img, pt, 5, (0, 0, 255), -1)
    cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

# 选择目标图像上的四个点
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])

# 计算透视变换矩阵
matrix = cv2.getPerspectiveTransform(pts1, pts2)

# 应用透视变换
result = cv2.warpPerspective(img, matrix, (w, h))  # 修正图像大小

# 显示原始图像、透视变换前后的图像
cv2.imshow("Original Image with Selected Points", img)
cv2.imshow("Perspective Transformation", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

小结

使用OpenCV中的透视变换的基本步骤:

找到四个特定的点:

在原始图像中选择四个特定的点,这四个点对应于一个矩形或者平行四边形在真实场景中的投影。

计算透视变换矩阵:

利用这四个点的映射关系,计算透视变换矩阵。OpenCV提供了 cv2.getPerspectiveTransform 函数来实现这一步骤。

应用透视变换:

利用计算得到的透视变换矩阵,对整个图像进行透视变换。OpenCV提供了 cv2.warpPerspective 函数用于执行透视变换。

相关推荐
shelly聊AI1 分钟前
AI赋能财务管理,AI技术助力企业自动化处理财务数据
人工智能·财务管理
波点兔2 分钟前
【部署glm4】属性找不到、参数错误问题解决(思路:修改模型包版本)
人工智能·python·机器学习·本地部署大模型·chatglm4
佚明zj1 小时前
全卷积和全连接
人工智能·深度学习
一点媛艺3 小时前
Kotlin函数由易到难
开发语言·python·kotlin
程序小旭3 小时前
机器视觉基础—双目相机
计算机视觉·双目相机
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨4 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
魔道不误砍柴功4 小时前
Java 中如何巧妙应用 Function 让方法复用性更强
java·开发语言·python
pianmian14 小时前
python数据结构基础(7)
数据结构·算法