极智开发 | 随机初始化onnx模型权重的方法

欢迎关注我的公众号 [极智视界],获取我的更多经验分享

大家好,我是极智视界,本文分享一下 随机初始化onnx模型权重的方法。

邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码和资源下载,链接:t.zsxq.com/0aiNxERDq

onnx 模型一直是在算法部署中扮演重要的角色,它是衔接前端训练框架和后端部署硬件之间的不二之选,

有的时候需要随机初始化 onnx 模型权重,比如在对外对接、定位问题的时候,直接提供完整模型比较敏感,但又没办法。这个时候的做法往往是提供一个怀疑存在问题的模型片段 或者是 只提供模型结构而不提供模型权重。这里的随机初始化 onnx 模型权重其实就是只提供模型结构而不提供模型权重,将权重进行随机初始化后,也意味着原来的权重 "失真" 了,这样能够起到一定的保护作用。

考虑到大部分的模型其实都是卷积神经网络 (这里就不考虑 Transformer、大模型啦),所以其实可以再简单点,只对模型中卷积算子的权重和偏置做一个随机初始化,这样就能够达到上面的目的,

直接上代码:

ini 复制代码
import onnx
import numpy as np
import onnxruntime

# 加载模型
model_path = 'your_model.onnx'
model = onnx.load(model_path)

# 遍历模型中的节点
for node in model.graph.node:
    if node.op_type == 'Conv':
        # 获取卷积层的权重和偏置的名称
        weight_name = node.input[1]
        bias_name = node.input[2] if len(node.input) > 2 else None
        # 查找并修改权重和偏置
        for initializer in model.graph.initializer:
            if initializer.name == weight_name:
                # 生成新的随机值
                new_weights = np.random.randn(*initializer.dims).astype(np.float32)
                initializer.float_data[:] = new_weights.flatten().tolist()
            elif initializer.name == bias_name:
                # 生成新的随机值
                new_biases = np.random.randn(*initializer.dims).astype(np.float32)
                initializer.float_data[:] = new_biases.flatten().tolist()

# 保存修改后的模型到一个新文件中
onnx.save(model, 'modified_model.onnx')

这样保存下来的 modified_model.onnx 模型中的卷积算子的权重和偏置都已经是经过随机初始化过的了,就可以稍微放心一点去对接、去提供了。

当然,上面的代码只是对模型中的卷积算子进行了权重和偏置的初始化,要是实在想更加通用一点,想对一般的算子都进行初始化,可以采用下面的代码,

ini 复制代码
import numpy as np
import onnx

# 加载已有的ONNX模型
onnx_path = "your_model.onnx"
model = onnx.load(onnx_path)

# 随机初始化模型权重
def random_init(model):
    for tensor in model.graph.initializer:
        # 使用 NumPy 生成随机数并重新填充权重
        tensor.float_data[:] = np.random.randn(*tensor.dims).astype(np.float32)

# 对模型进行随机初始化
random_init(model)

# 将带有随机初始化权重的模型保存回ONNX文件
onnx.save(model, "modified_model.onnx")

好了,以上分享了 随机初始化onnx模型权重的方法,希望我的分享能对你的学习有一点帮助。


【公众号传送】

《极智开发 | 随机初始化onnx模型权重的方法》

畅享人工智能的科技魅力,让好玩的AI项目不难玩。邀请您加入我的知识星球, 星球内我精心整备了大量好玩的AI项目,皆以工程源码形式开放使用,涵盖人脸、检测、分割、多模态、AIGC、自动驾驶、工业等。一定会对你学习有所帮助,也一定非常好玩,并持续更新更加有趣的项目。 t.zsxq.com/0aiNxERDq

相关推荐
CoovallyAIHub10 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub10 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
aneasystone本尊11 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒12 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊1 天前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯1 天前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai