【机器学习】039_合理初始化

一、稳定训练

目标:使梯度值在更合理的范围内

常见方法如下:

· 将乘法变为加法

· ResNet:当层数较多时,会加入一些加法进去

· LSTM:如果时序序列较长时,把一些对时序的乘法做加法

· 归一化

· 梯度归一化:把梯度转化为一个均值0、方差1这样的数,从而避免梯度的数值过大或过小

· 梯度裁剪:如果梯度大于一个阈值,就强行拉回来减到一个范围里

· 合理的权重初始化、选取合理的激活函数

二、合理初始化操作

目标:让每层的方差都为一个常数

· 让每层的输出和梯度都看作"随机变量"

· 让输出和梯度的均值和方差都保持一致,那么就可以在每层的传递之间保持,不会出现问题

权重初始化

目标:将参数和权重初始化在一个合理的区间值里,防止参数变化过大或过小导致出现问题

· 当训练开始时,数值更易出现不稳定的问题

· 随机初始的参数可能离最优解很远,更新幅度较陡,损失函数会很大,从而导致梯度较大

· 最优解附近一般较缓,更新幅度会较小

· 假设不定义初始化方法,框架将使用默认初始化,即采用正态分布初始化权重值

· 这种初始化方法对小型神经网络较为有效,但当网络较深时,这种初始化方法往往表现较差

· Xavier初始化:

某些没有非线性 的全连接层输出(例如,隐藏变量) 的尺度分布:

· 对于某一层 输入 以及其相关权重 ,输出由下式给出:

权重 都是从同一分布中独立抽取的

· 假设该分布具有均值 0 和方差 (不一定是标准正态分布,只需均值方差存在)

· 假设层 的输入也具有均值 0 和方差 ,且独立于 并彼此独立

可以按下列方式计算 的均值与方差:

为了保障 的方差不变化,可设置

现在考虑反向传播过程,我们面临着类似的问题,尽管梯度是从更靠近输出的层传播的。

使用与前向传播相同的推断,我们可以看到:

· 除非 ,否则梯度的方差可能会增大。其中 是该层输出的数量。

· 然而,我们不可能同时满足 这两个条件。

但我们只需满足:

即可达到要求,这便是Xavier初始化的基础。

通常,Xavier初始化从均值为 0,方差 的高斯分布中采样权重。

Xavier初始化表明:

· 对于每一层,输出的方差不受输入数量的影响;

· 任何梯度的方差不受输出数量的影响。

相关推荐
算家计算3 分钟前
AI学习范式变革:Ilya Sutskever最新访谈揭示后规模时代的AI发展路径—从算力竞争到研究竞争的转向
人工智能·资讯
Jing_Rainbow39 分钟前
【AI-7 全栈-2 /Lesson16(2025-11-01)】构建一个基于 AIGC 的 Logo 生成 Bot:从前端到后端的完整技术指南 🎨
前端·人工智能·后端
syounger40 分钟前
奔驰全球 IT 加速转型:SAP × AWS × Agentic AI 如何重塑企业核心系统
人工智能·云计算·aws
上班日常摸鱼1 小时前
Shell脚本基础教程:变量、条件判断、循环、函数实战(附案例)
python
16_one1 小时前
autoDL安装Open-WebUi+Rag本地知识库问答+Function Calling
人工智能·后端·算法
智能交通技术1 小时前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
无心水1 小时前
【Python实战进阶】5、Python字符串终极指南:从基础到高性能处理的完整秘籍
开发语言·网络·python·字符串·unicode·python实战进阶·python工业化实战进阶
2301_807583231 小时前
了解python,并编写第一个程序,常见的bug
linux·python
小白学大数据1 小时前
构建混合爬虫:何时使用Requests,何时切换至Selenium处理请求头?
爬虫·python·selenium·测试工具
2401_827560201 小时前
【Python脚本系列】PyAudio+librosa+dtw库录制、识别音频并实现点击(四)
python·语音识别