【机器学习】039_合理初始化

一、稳定训练

目标:使梯度值在更合理的范围内

常见方法如下:

· 将乘法变为加法

· ResNet:当层数较多时,会加入一些加法进去

· LSTM:如果时序序列较长时,把一些对时序的乘法做加法

· 归一化

· 梯度归一化:把梯度转化为一个均值0、方差1这样的数,从而避免梯度的数值过大或过小

· 梯度裁剪:如果梯度大于一个阈值,就强行拉回来减到一个范围里

· 合理的权重初始化、选取合理的激活函数

二、合理初始化操作

目标:让每层的方差都为一个常数

· 让每层的输出和梯度都看作"随机变量"

· 让输出和梯度的均值和方差都保持一致,那么就可以在每层的传递之间保持,不会出现问题

权重初始化

目标:将参数和权重初始化在一个合理的区间值里,防止参数变化过大或过小导致出现问题

· 当训练开始时,数值更易出现不稳定的问题

· 随机初始的参数可能离最优解很远,更新幅度较陡,损失函数会很大,从而导致梯度较大

· 最优解附近一般较缓,更新幅度会较小

· 假设不定义初始化方法,框架将使用默认初始化,即采用正态分布初始化权重值

· 这种初始化方法对小型神经网络较为有效,但当网络较深时,这种初始化方法往往表现较差

· Xavier初始化:

某些没有非线性 的全连接层输出(例如,隐藏变量) 的尺度分布:

· 对于某一层 输入 以及其相关权重 ,输出由下式给出:

权重 都是从同一分布中独立抽取的

· 假设该分布具有均值 0 和方差 (不一定是标准正态分布,只需均值方差存在)

· 假设层 的输入也具有均值 0 和方差 ,且独立于 并彼此独立

可以按下列方式计算 的均值与方差:

为了保障 的方差不变化,可设置

现在考虑反向传播过程,我们面临着类似的问题,尽管梯度是从更靠近输出的层传播的。

使用与前向传播相同的推断,我们可以看到:

· 除非 ,否则梯度的方差可能会增大。其中 是该层输出的数量。

· 然而,我们不可能同时满足 这两个条件。

但我们只需满足:

即可达到要求,这便是Xavier初始化的基础。

通常,Xavier初始化从均值为 0,方差 的高斯分布中采样权重。

Xavier初始化表明:

· 对于每一层,输出的方差不受输入数量的影响;

· 任何梯度的方差不受输出数量的影响。

相关推荐
shangjian00714 分钟前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错18 分钟前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰21 分钟前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
2501_941507941 小时前
【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案
深度学习·安全·yolo
丝斯20111 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技5 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329725 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔6 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案7 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信7 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信