Spark---基于Standalone模式提交任务

Standalone模式两种提交任务方式

一、Standalone-client提交任务方式

1**、提交命令**

复制代码
./spark-submit --master spark://mynode1:7077  
--class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100

或者

复制代码
./spark-submit --master spark://mynode1:7077 
--deploy-mode client  
--class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100

2、执行原理图解

**1)、**执行流程

1、client模式提交任务后,会在客户端启动Driver进程。

2、Driver会向Master申请启动Application启动的资源

3、Master收到请求之后会在对应的Worker节点上启动Executor

4、Executor启动之后,会注册给Driver端,Driver掌握一批计算资源

5、Driver端将task发送到worker端执行。worker将task执行结果返回到Driver端。

2)、总结

client模式适用于测试调试程序。Driver进程是在客户端启动的,这里的客户端就是指提交应用程序的当前节点。在Driver端可以看到task执行的情况。生产环境下不能使用client模式,是因为:假设要提交100个application到集群运行,Driver每次都会在client端启动,那么就会导致客户端100次网卡流量暴增的问题。client模式适用于程序测试,不适用于生产环境,在客户端可以看到task的执行和结果

二、Standalone-cluster提交任务方式

1、提交命令

复制代码
./spark-submit --master spark://mynode1:7077 
--deploy-mode cluster
--class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.3.1.jar 100

2、执行原理图解

1)、执行流程

1、cluster模式提交应用程序后,会向Master请求启动Driver

2、Master接受请求,随机在集群一台节点启动Driver进程

3、Driver启动后为当前的应用程序申请资源

4、Driver端发送task到worker节点上执行

5、worker将执行情况和执行结果返回给Driver端

2)、总结

Driver进程是在集群某一台Worker上启动的,在客户端是无法查看task的执行情况的。假设要提交100个application到集群运行,每次Driver会随机在集群中某一台Worker上启动,那么这100次网卡流量暴增的问题就散布在集群上。

  • 总结Standalone两种方式提交任务,Driver与集群的通信包括:
  1. Driver负责应用程序资源的申请

  2. 任务的分发。

  3. 结果的回收。

  4. 监控task执行情况。

相关推荐
菜鸟康31 分钟前
C++实现分布式网络通信框架RPC(2)——rpc发布端
分布式·网络协议·rpc
T062051442 分钟前
【实证分析】上市公司企业风险承担水平数据集(2000-2022年)
大数据·人工智能
G皮T1 小时前
【Elasticsearch】映射:Join 类型、Flattened 类型、多表关联设计
大数据·elasticsearch·搜索引擎·nested·join·多表关联·flattened
G皮T1 小时前
【Elasticsearch】映射:Nested 类型
大数据·elasticsearch·搜索引擎·映射·nested·嵌套类型·mappings
狂奔solar1 小时前
逻辑回归暴力训练预测金融欺诈
大数据·金融·逻辑回归
斯普信专业组2 小时前
Kafka主题运维全指南:从基础配置到故障处理
运维·分布式·kafka
linmoo19862 小时前
Flink 系列之二十二 - 高级概念 - 保存点
大数据·flink·savepoint·保存点
百度Geek说3 小时前
BaikalDB 架构演进实录:打造融合向量化与 MPP 的 HTAP 查询引擎
数据库·分布式·架构
试剂界的爱马仕4 小时前
TCA 循环中间体如何改写肝损伤命运【AbMole】
大数据·人工智能·科技·机器学习·ai写作