python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。

直接看代码,代码比较简单,不是很复杂:

注:cv2.convertScaleAbs进行了一个绝对值操作,因为可能计算出来梯度为负值。

python 复制代码
from ctypes.wintypes import SIZE
from multiprocessing.pool import IMapUnorderedIterator
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os

path=r'ls.jpg'

img=cv2.imread(path,1)
img_gray=cv2.imread(path,0)



def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()


#cv_show('img_gray',img_gray)



#Sobel算子




img_sobel_x=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度




img_sobel_y=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度

sobel_img_x_abs=cv2.convertScaleAbs(img_sobel_x)
img_sobel_y_abs=cv2.convertScaleAbs(img_sobel_y)

img_sobel_xy_abs=cv2.addWeighted(sobel_img_x_abs,0.5,img_sobel_y_abs,0.5,0)
plt.subplot(231)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_sobel_x[:,:,::-1])
plt.title('img_sobel_x')

plt.subplot(232)
plt.imshow(sobel_img_x_abs[:,:,::-1])
plt.title('sobel_img_x_abs')
plt.subplot(233)

#result=BGR_TO_RGB(result)
plt.imshow( img[:,:,::-1])
plt.title('img')

plt.subplot(234)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y[:,:,::-1])
plt.title('img_sobel_y')


plt.subplot(235)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y_abs[:,:,::-1])
plt.title('img_sobel_y_abs')

plt.subplot(236)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_xy_abs[:,:,::-1])
plt.title('img_sobel_xy_abs')
plt.show()



#沙尔算子

scharrx=cv2.Scharr(img,cv2.CV_64F,dx=1,dy=0)



scharry=cv2.Scharr(img,cv2.CV_64F,dx=0,dy=1)

scharry_img_x_abs=cv2.convertScaleAbs(scharrx)

scharry_img_y_abs=cv2.convertScaleAbs(scharry)

img_scharry_xy_abs=cv2.addWeighted(scharry_img_x_abs,0.5,scharry_img_y_abs,0.5,0)
#拉普拉斯算子
lap_img=cv2.Laplacian(img,cv2.CV_64F)
lap_img_abs=cv2.convertScaleAbs(lap_img)
plt.subplot(121)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(scharry_img_y_abs[:,:,::-1])
plt.title('scharry_img_y_abs')

plt.subplot(122)
plt.imshow(lap_img_abs[:,:,::-1])
plt.title('lap_img_abs')
plt.show()


#result=BGR_TO_RGB(r

path=r'D:\learn\photo\cv\lena.jpg'

img=cv2.imread(path,0)
img_canny1=cv2.Canny(img,80,150)
img_canny2=cv2.Canny(img,50,150)
plt.subplot(131)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img,'gray')
plt.title('img')
plt.subplot(132)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_canny1,'gray')
plt.title('img_canny1')

plt.subplot(133)
plt.imshow(img_canny2,'gray')
plt.title('img_canny2')
plt.show()


os.system("pause")



相关推荐
豌豆花下猫1 分钟前
Python 潮流周刊#99:如何在生产环境中运行 Python?(摘要)
后端·python·ai
小杨4045 分钟前
python入门系列二十(peewee)
人工智能·python·pycharm
弧襪5 分钟前
FlaskRestfulAPI接口的初步认识
python·flaskrestfulapi
船长@Quant7 分钟前
文档构建:Sphinx全面使用指南 — 进阶篇
python·markdown·sphinx·文档构建
cloudy49110 分钟前
强化学习:历史基金净产值,学习最大化长期收益
python·强化学习
꧁坚持很酷꧂16 分钟前
配置Ubuntu18.04中的Qt Creator为中文(图文详解)
开发语言·qt·ubuntu
Bruce_Liuxiaowei21 分钟前
使用Python脚本在Mac上彻底清除Chrome浏览历史:开发实战与隐私保护指南
chrome·python·macos
不当菜虚困33 分钟前
JAVA设计模式——(四)门面模式
java·开发语言·设计模式
ruyingcai66666633 分钟前
用python进行OCR识别
开发语言·python·ocr
Niuguangshuo36 分钟前
Python设计模式:MVC模式
python·设计模式·mvc