python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。

直接看代码,代码比较简单,不是很复杂:

注:cv2.convertScaleAbs进行了一个绝对值操作,因为可能计算出来梯度为负值。

python 复制代码
from ctypes.wintypes import SIZE
from multiprocessing.pool import IMapUnorderedIterator
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os

path=r'ls.jpg'

img=cv2.imread(path,1)
img_gray=cv2.imread(path,0)



def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()


#cv_show('img_gray',img_gray)



#Sobel算子




img_sobel_x=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度




img_sobel_y=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度

sobel_img_x_abs=cv2.convertScaleAbs(img_sobel_x)
img_sobel_y_abs=cv2.convertScaleAbs(img_sobel_y)

img_sobel_xy_abs=cv2.addWeighted(sobel_img_x_abs,0.5,img_sobel_y_abs,0.5,0)
plt.subplot(231)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_sobel_x[:,:,::-1])
plt.title('img_sobel_x')

plt.subplot(232)
plt.imshow(sobel_img_x_abs[:,:,::-1])
plt.title('sobel_img_x_abs')
plt.subplot(233)

#result=BGR_TO_RGB(result)
plt.imshow( img[:,:,::-1])
plt.title('img')

plt.subplot(234)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y[:,:,::-1])
plt.title('img_sobel_y')


plt.subplot(235)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y_abs[:,:,::-1])
plt.title('img_sobel_y_abs')

plt.subplot(236)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_xy_abs[:,:,::-1])
plt.title('img_sobel_xy_abs')
plt.show()



#沙尔算子

scharrx=cv2.Scharr(img,cv2.CV_64F,dx=1,dy=0)



scharry=cv2.Scharr(img,cv2.CV_64F,dx=0,dy=1)

scharry_img_x_abs=cv2.convertScaleAbs(scharrx)

scharry_img_y_abs=cv2.convertScaleAbs(scharry)

img_scharry_xy_abs=cv2.addWeighted(scharry_img_x_abs,0.5,scharry_img_y_abs,0.5,0)
#拉普拉斯算子
lap_img=cv2.Laplacian(img,cv2.CV_64F)
lap_img_abs=cv2.convertScaleAbs(lap_img)
plt.subplot(121)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(scharry_img_y_abs[:,:,::-1])
plt.title('scharry_img_y_abs')

plt.subplot(122)
plt.imshow(lap_img_abs[:,:,::-1])
plt.title('lap_img_abs')
plt.show()


#result=BGR_TO_RGB(r

path=r'D:\learn\photo\cv\lena.jpg'

img=cv2.imread(path,0)
img_canny1=cv2.Canny(img,80,150)
img_canny2=cv2.Canny(img,50,150)
plt.subplot(131)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img,'gray')
plt.title('img')
plt.subplot(132)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_canny1,'gray')
plt.title('img_canny1')

plt.subplot(133)
plt.imshow(img_canny2,'gray')
plt.title('img_canny2')
plt.show()


os.system("pause")



相关推荐
Robot侠2 小时前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
小浣熊熊熊熊熊熊熊丶2 小时前
《Effective Java》第25条:限制源文件为单个顶级类
java·开发语言·effective java
啃火龙果的兔子3 小时前
JDK 安装配置
java·开发语言
星哥说事3 小时前
应用程序监控:Java 与 Web 应用的实践
java·开发语言
等....3 小时前
Miniconda使用
开发语言·python
zfj3213 小时前
go为什么设计成源码依赖,而不是二进制依赖
开发语言·后端·golang
醇氧3 小时前
org.jetbrains.annotations的@Nullable 学习
java·开发语言·学习·intellij-idea
Java&Develop3 小时前
Aes加密 GCM java
java·开发语言·python
weixin_462446233 小时前
使用 Go 实现 SSE 流式推送 + 打字机效果(模拟 Coze Chat)
开发语言·后端·golang
JIngJaneIL4 小时前
基于springboot + vue古城景区管理系统(源码+数据库+文档)
java·开发语言·前端·数据库·vue.js·spring boot·后端