python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。

直接看代码,代码比较简单,不是很复杂:

注:cv2.convertScaleAbs进行了一个绝对值操作,因为可能计算出来梯度为负值。

python 复制代码
from ctypes.wintypes import SIZE
from multiprocessing.pool import IMapUnorderedIterator
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os

path=r'ls.jpg'

img=cv2.imread(path,1)
img_gray=cv2.imread(path,0)



def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()


#cv_show('img_gray',img_gray)



#Sobel算子




img_sobel_x=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度




img_sobel_y=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度

sobel_img_x_abs=cv2.convertScaleAbs(img_sobel_x)
img_sobel_y_abs=cv2.convertScaleAbs(img_sobel_y)

img_sobel_xy_abs=cv2.addWeighted(sobel_img_x_abs,0.5,img_sobel_y_abs,0.5,0)
plt.subplot(231)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_sobel_x[:,:,::-1])
plt.title('img_sobel_x')

plt.subplot(232)
plt.imshow(sobel_img_x_abs[:,:,::-1])
plt.title('sobel_img_x_abs')
plt.subplot(233)

#result=BGR_TO_RGB(result)
plt.imshow( img[:,:,::-1])
plt.title('img')

plt.subplot(234)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y[:,:,::-1])
plt.title('img_sobel_y')


plt.subplot(235)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y_abs[:,:,::-1])
plt.title('img_sobel_y_abs')

plt.subplot(236)

#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_xy_abs[:,:,::-1])
plt.title('img_sobel_xy_abs')
plt.show()



#沙尔算子

scharrx=cv2.Scharr(img,cv2.CV_64F,dx=1,dy=0)



scharry=cv2.Scharr(img,cv2.CV_64F,dx=0,dy=1)

scharry_img_x_abs=cv2.convertScaleAbs(scharrx)

scharry_img_y_abs=cv2.convertScaleAbs(scharry)

img_scharry_xy_abs=cv2.addWeighted(scharry_img_x_abs,0.5,scharry_img_y_abs,0.5,0)
#拉普拉斯算子
lap_img=cv2.Laplacian(img,cv2.CV_64F)
lap_img_abs=cv2.convertScaleAbs(lap_img)
plt.subplot(121)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(scharry_img_y_abs[:,:,::-1])
plt.title('scharry_img_y_abs')

plt.subplot(122)
plt.imshow(lap_img_abs[:,:,::-1])
plt.title('lap_img_abs')
plt.show()


#result=BGR_TO_RGB(r

path=r'D:\learn\photo\cv\lena.jpg'

img=cv2.imread(path,0)
img_canny1=cv2.Canny(img,80,150)
img_canny2=cv2.Canny(img,50,150)
plt.subplot(131)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img,'gray')
plt.title('img')
plt.subplot(132)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_canny1,'gray')
plt.title('img_canny1')

plt.subplot(133)
plt.imshow(img_canny2,'gray')
plt.title('img_canny2')
plt.show()


os.system("pause")



相关推荐
weixin_4461224613 分钟前
JAVA内存区域划分
java·开发语言·redis
悦悦子a啊16 分钟前
Python之--基本知识
开发语言·前端·python
QuantumStack1 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
whoarethenext1 小时前
使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
开发语言·c++·opencv·mfcc
jndingxin1 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
笑稀了的野生俊2 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力
Naiva2 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm
代码的奴隶(艾伦·耶格尔)2 小时前
后端快捷代码
java·开发语言
Jay_5153 小时前
C++多态与虚函数详解:从入门到精通
开发语言·c++
晨同学03273 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉