pytorch矩阵乘法

torch.matmul

torch.matmul是PyTorch中执行一般矩阵乘法的函数,它接受两个矩阵作为输入,并返回它们的乘积。它适用于任何两个矩阵,无论是密集矩阵还是稀疏矩阵。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.tensor([[1, 2], [3, 4]])  
mat2 = torch.tensor([[5, 6], [7, 8]])  
  
# 使用torch.matmul进行矩阵乘法  
result = torch.matmul(mat1, mat2)  
  
print(result)

torch.mm

torch.mm是PyTorch中用于密集矩阵乘法的函数。它接受两个密集矩阵作为输入,并返回它们的乘积。与torch.matmul相比,torch.mm在处理密集矩阵时具有更高的性能和更简单的语法。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.Tensor([[1, 2], [3, 4]])  
mat2 = torch.Tensor([[5, 6], [7, 8]])  
  
# 使用torch.mm进行矩阵乘法  
result = torch.mm(mat1, mat2)  
  
print(result)

torch.spmm

torch.spmm是PyTorch中用于稀疏矩阵乘法的函数。它接受两个稀疏矩阵作为输入,并返回它们的乘积。与torch.matmul和torch.mm相比,torch.spmm更适用于处理包含大量零值元素的矩阵,因为它可以有效地处理稀疏结构并减少计算量。

python 复制代码
import torch  
import torch.sparse_coo_tensor as coo_tensor  
  
# 创建两个稀疏矩阵  
row_0 = [0, 1, 2]  
col_0 = [0, 2, 1]  
value_0 = [1, 2, 3]  
sparse_mat1 = coo_tensor.from_sparse((torch.tensor(row_0), torch.tensor(col_0), torch.tensor(value_0)))  
  
row_1 = [0, 2, 3]  
col_1 = [1, 0, 2]  
value_1 = [4, 5, 6]  
sparse_mat2 = coo_tensor.from_sparse((torch.tensor(row_1), torch.tensor(col_1), torch.tensor(value_1)))  
  
# 使用torch.spmm进行矩阵乘法  
result = torch.spmm(sparse_mat1, sparse_mat2)  
  
print(result)
相关推荐
LZXCyrus7 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。25 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr33 分钟前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive33 分钟前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦35 分钟前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好1 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣1 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉
ZOMI酱2 小时前
【AI系统】GPU 架构与 CUDA 关系
人工智能·架构