pytorch矩阵乘法

torch.matmul

torch.matmul是PyTorch中执行一般矩阵乘法的函数,它接受两个矩阵作为输入,并返回它们的乘积。它适用于任何两个矩阵,无论是密集矩阵还是稀疏矩阵。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.tensor([[1, 2], [3, 4]])  
mat2 = torch.tensor([[5, 6], [7, 8]])  
  
# 使用torch.matmul进行矩阵乘法  
result = torch.matmul(mat1, mat2)  
  
print(result)

torch.mm

torch.mm是PyTorch中用于密集矩阵乘法的函数。它接受两个密集矩阵作为输入,并返回它们的乘积。与torch.matmul相比,torch.mm在处理密集矩阵时具有更高的性能和更简单的语法。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.Tensor([[1, 2], [3, 4]])  
mat2 = torch.Tensor([[5, 6], [7, 8]])  
  
# 使用torch.mm进行矩阵乘法  
result = torch.mm(mat1, mat2)  
  
print(result)

torch.spmm

torch.spmm是PyTorch中用于稀疏矩阵乘法的函数。它接受两个稀疏矩阵作为输入,并返回它们的乘积。与torch.matmul和torch.mm相比,torch.spmm更适用于处理包含大量零值元素的矩阵,因为它可以有效地处理稀疏结构并减少计算量。

python 复制代码
import torch  
import torch.sparse_coo_tensor as coo_tensor  
  
# 创建两个稀疏矩阵  
row_0 = [0, 1, 2]  
col_0 = [0, 2, 1]  
value_0 = [1, 2, 3]  
sparse_mat1 = coo_tensor.from_sparse((torch.tensor(row_0), torch.tensor(col_0), torch.tensor(value_0)))  
  
row_1 = [0, 2, 3]  
col_1 = [1, 0, 2]  
value_1 = [4, 5, 6]  
sparse_mat2 = coo_tensor.from_sparse((torch.tensor(row_1), torch.tensor(col_1), torch.tensor(value_1)))  
  
# 使用torch.spmm进行矩阵乘法  
result = torch.spmm(sparse_mat1, sparse_mat2)  
  
print(result)
相关推荐
过河卒_zh15667666 分钟前
9.13AI简报丨哈佛医学院开源AI模型,Genspark推出AI浏览器
人工智能·算法·microsoft·aigc·算法备案·生成合成类算法备案
程序员ken9 分钟前
深入理解大语言模型(5)-关于token
人工智能·语言模型·自然语言处理
Codebee17 分钟前
OneCode 移动套件多平台适配详细报告
前端·人工智能
sinat_2869451932 分钟前
Case-Based Reasoning用于RAG
人工智能·算法·chatgpt
许泽宇的技术分享34 分钟前
AI时代的内容创作革命:深度解析xiaohongshu-mcp项目的技术创新与实战价值
人工智能
地平线开发者37 分钟前
征程 6 灰度图部署链路介绍
人工智能·算法·自动驾驶·汽车
工藤学编程43 分钟前
零基础学AI大模型之SpringAI
人工智能
Xy-unu1 小时前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
zzu123zsw2 小时前
第五章:自动化脚本开发
人工智能·自动化
IT_陈寒2 小时前
Python 3.12 新特性实战:10个性能优化技巧让你的代码快如闪电⚡
前端·人工智能·后端