pytorch矩阵乘法

torch.matmul

torch.matmul是PyTorch中执行一般矩阵乘法的函数,它接受两个矩阵作为输入,并返回它们的乘积。它适用于任何两个矩阵,无论是密集矩阵还是稀疏矩阵。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.tensor([[1, 2], [3, 4]])  
mat2 = torch.tensor([[5, 6], [7, 8]])  
  
# 使用torch.matmul进行矩阵乘法  
result = torch.matmul(mat1, mat2)  
  
print(result)

torch.mm

torch.mm是PyTorch中用于密集矩阵乘法的函数。它接受两个密集矩阵作为输入,并返回它们的乘积。与torch.matmul相比,torch.mm在处理密集矩阵时具有更高的性能和更简单的语法。

python 复制代码
import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.Tensor([[1, 2], [3, 4]])  
mat2 = torch.Tensor([[5, 6], [7, 8]])  
  
# 使用torch.mm进行矩阵乘法  
result = torch.mm(mat1, mat2)  
  
print(result)

torch.spmm

torch.spmm是PyTorch中用于稀疏矩阵乘法的函数。它接受两个稀疏矩阵作为输入,并返回它们的乘积。与torch.matmul和torch.mm相比,torch.spmm更适用于处理包含大量零值元素的矩阵,因为它可以有效地处理稀疏结构并减少计算量。

python 复制代码
import torch  
import torch.sparse_coo_tensor as coo_tensor  
  
# 创建两个稀疏矩阵  
row_0 = [0, 1, 2]  
col_0 = [0, 2, 1]  
value_0 = [1, 2, 3]  
sparse_mat1 = coo_tensor.from_sparse((torch.tensor(row_0), torch.tensor(col_0), torch.tensor(value_0)))  
  
row_1 = [0, 2, 3]  
col_1 = [1, 0, 2]  
value_1 = [4, 5, 6]  
sparse_mat2 = coo_tensor.from_sparse((torch.tensor(row_1), torch.tensor(col_1), torch.tensor(value_1)))  
  
# 使用torch.spmm进行矩阵乘法  
result = torch.spmm(sparse_mat1, sparse_mat2)  
  
print(result)
相关推荐
whltaoin1 分钟前
【AI Agent Skills】重塑 AI Agent 竞争力:Skills 体系的核心价值、构建方法与未来方向
大数据·人工智能·agent·agent skills
Toky丶7 分钟前
【文献阅读】LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
人工智能·语言模型
skywalk816311 分钟前
easy-vibe:零基础,在项目制学习中掌握 Vibe Coding 与 AI 技能,构建第一个 AI 原生产品
人工智能
纪伊路上盛名在28 分钟前
矩阵微积分速通
深度学习·线性代数·机器学习·矩阵·微积分
TonyLee01734 分钟前
储备池计算基础实践
人工智能·python
码上宝藏1 小时前
设计与开发的效率壁垒,被 Locofy.ai 一键击穿
人工智能
之歆1 小时前
Spring AI Alibaba 从入门到进阶实战-笔记
人工智能·笔记·spring
权泽谦1 小时前
病灶变化预测 vs 分类:医学影像 AI 中更有价值的问题是什么?
人工智能·机器学习·ai·分类·数据挖掘
Sui_Network1 小时前
Walrus 2025 年度回顾
大数据·前端·人工智能·深度学习·区块链
说私域1 小时前
开源悬赏活动报名AI智能名片链动2+1模式商城小程序的应用与价值
人工智能·微信·小程序·开源