【机器学习】聚类(二):原型聚类:LVQ聚类(学习向量量化)

文章目录

  • 一、实验介绍
      1. 算法流程
      1. 算法解释
      1. 算法特点
      1. 应用场景
      1. 注意事项
  • 二、实验环境
      1. 配置虚拟环境
      1. 库版本介绍
  • 三、实验内容
      1. 导入必要的库
      1. LVQ类
      • a. 构造函数
      • b. 闵可夫斯基距离
      • c. LVQ聚类过程
      • e. 聚类结果可视化
      1. 辅助函数
      1. 主函数
      • a. 命令行界面 (CLI)
      • b. 数据加载
      • c. 模型训练及可视化
      1. 运行脚本的命令
      1. 代码整合

学习向量量化LVQ)是一种原型聚类算法,它在寻找原型向量以刻画数据集聚类结构的过程中利用了样本的类别标记。相较于一般聚类算法,LVQ通过监督信息辅助聚类,使得原型向量更好地代表各个聚类簇。

一、实验介绍

1. 算法流程

在学习过程中,LVQ算法通过样本的类别标记来引导原型向量的学习,使得原型向量更好地代表各个聚类簇。算法的性能高度依赖于初始化、学习率的设定以及停止条件的选择。

2. 算法解释

  • 在初始化阶段,原型向量通过随机选取相应类别标记的样本进行初始化。
  • 在学习过程中,算法通过计算距离和类别标记的一致性来引导原型向量的学习。相似类别的样本有助于更新原型向量,从而更好地代表该类别。

3. 算法特点

  • LVQ算法结合了监督学习和聚类,通过使用类别标记进行引导,更好地适应样本的分布。
  • 对于有监督信息的数据集,LVQ通常能够获得更具有判别性的聚类结果。
  • 学习率η的选择对算法的性能有影响,需要根据具体情况进行调整。

4. 应用场景

  • 适用于样本集带有类别标记的情况,尤其在需要获得判别性聚类结果的场景中。
  • 在需要将样本分配到与其最相似的原型向量所代表的簇中的应用中表现良好。

5. 注意事项

  • 初始原型向量的选择可能影响最终聚类结果,因此在具体应用中需要仔细选择初始原型向量。
  • 学习率的选择需要谨慎,过大的学习率可能导致原型向量的不稳定更新,而过小的学习率可能使得算法收敛缓慢。

二、实验环境

1. 配置虚拟环境

bash 复制代码
conda create -n ML python==3.9
bash 复制代码
conda activate ML
bash 复制代码
conda install scikit-learn matplotlib seaborn pandas

2. 库版本介绍

软件包 本实验版本
matplotlib 3.5.2
numpy 1.21.5
pandas 1.4.4
python 3.9.13
scikit-learn 1.0.2
seaborn 0.11.2

三、实验内容

0. 导入必要的库

python 复制代码
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import argparse
import random

1. LVQ类

  • __init__ :初始化LVQ聚类的参数
  • minkowski_distance 函数:计算两个样本点之间的闵可夫斯基距离
  • fit 方法:执行LVQ聚类的迭代过程
  • visualization 函数:使用Seaborn和Matplotlib可视化聚类结果

a. 构造函数

python 复制代码
class LVQ(object):
    def __init__(self, features, labels, p=2, eta=0.1, max_iters=10, epsilon=1e-6, seed=0):
        # 初始化LVQ类的属性
        self.features = features          # 样本特征
        self.num_samples, self.num_features = self.features.shape
        self.labels = labels              # 样本标签
        self.num_classes = len(np.unique(self.labels))  # 类别数
        self.p = p                        # Minkowski距离的阶数
        self.eta = eta                    # 学习率
        self.max_iters = max_iters        # 最大迭代次数
        self.epsilon = epsilon            # 停止条件,更新幅度小于epsilon时停止
        self.seed = seed                  # 随机种子
        self.proto = None                 # 原型向量

b. 闵可夫斯基距离

python 复制代码
    def minkowski_distance(self, x, y=0):
        return np.linalg.norm(x - y, ord=self.p)
  • 使用了NumPy的 linalg.norm 函数,其中 ord 参数用于指定距离的阶数。

c. LVQ聚类过程

python 复制代码
    def fit(self):
        random.seed(self.seed)
        # 每类中随机选择一个原型向量
        self.proto = np.array([random.choice(self.features[self.labels == c]) for c in range(self.num_classes)])

        for i in range(self.max_iters):
            index = random.randint(0, self.num_samples-1)    # 随机选取一个样本
            xj = self.features[index]          # 样本特征
            yj = self.labels[index]            # 样本标签
            dist = [self.minkowski_distance(d) for d in xj - self.proto]   # 计算到各个原型向量的距离
            min_idx = np.argmin(dist)
            delta = self.eta * (xj - self.proto[min_idx])
            if yj == min_idx:
                # 更新原型向量
                self.proto[min_idx] += delta
            else:
                self.proto[min_idx] -= delta
                # 更新原型向量

            if self.minkowski_distance(delta) < self.epsilon:
                break
  • 在初始化原型向量后,LVQ通过迭代过程不断调整原型向量,以适应样本的分布。
  • 随机选择一个样本,计算该样本与所有原型向量的距离,并找到最近的原型向量。
  • 根据样本标签和最近原型向量的类别标记更新原型向量。

e. 聚类结果可视化

python 复制代码
    def visualization(self):
        current_palette = sns.color_palette()
        sns.set_theme(context="talk")
        clu_idx = np.zeros_like(self.labels, dtype=np.int64)
        for i, x in enumerate(self.features):
            dist = [self.minkowski_distance(d) for d in x - self.proto]
            clu_idx[i] = np.argmin(dist)

        for c in range(self.num_classes):
            x = self.features[clu_idx == c]
            sns.scatterplot(x=x[:, 0], y=x[:, 1], alpha=0.8, color=current_palette[c])
            sns.scatterplot(x=[self.proto[c][0]], y=[self.proto[c][1]], color=current_palette[c], marker='+', s=500)
        plt.show()

2. 辅助函数

python 复制代码
def order_type(v: str):
    if v.lower() in ("-inf", "inf"):
        return -np.inf if v.startswith("-") else np.inf
    else:
        try:
            return float(v)
        except ValueError:
            raise argparse.ArgumentTypeError("Unsupported value encountered")
  • order_type 函数:用于处理命令行参数中的 -p(距离测量参数),将字符串转换为浮点数。

3. 主函数

a. 命令行界面 (CLI)

  • 使用 argparse 解析命令行参数
python 复制代码
	parser = argparse.ArgumentParser(description="LVQ Demo")
    parser.add_argument("-m", "--max-iters", type=int, default=400, help="Maximum iterations")
    parser.add_argument("-p", type=order_type, default=2., help="Distance measurement")
    parser.add_argument("--eta", type=float, default=0.1, help="Learning rate")
    parser.add_argument("--eps", type=float, default=1e-6)
    parser.add_argument("--seed", type=int, default=110, help="Random seed")
    parser.add_argument("--dataset", type=str, default="./lvq.1.csv", help="Path to dataset")
    args = parser.parse_args()
    

b. 数据加载

  • 从指定路径加载数据集。
python 复制代码
	df = pd.read_csv(args.dataset, header=None)
    features = df.iloc[:, [0, 1]].to_numpy()
    labels = df.iloc[:, 2].to_numpy()

c. 模型训练及可视化

python 复制代码
	model = LVQ(features, labels, p=args.p, eta=args.eta, max_iters=args.max_iters, epsilon=args.eps, seed=args.seed)
    model.fit()
    model.visualization()


4. 运行脚本的命令

  • 通过命令行传递参数来运行脚本,指定聚类数目、初始化模式、最大迭代次数等。
bash 复制代码
python LVQ.py -k 3 --mode random -m 100 -p 2 --seed 0 --dataset ./lvq.1.csv

5. 代码整合

python 复制代码
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import argparse
import random


class LVQ(object):
    def __init__(self, features, labels, p=2, eta=0.1, max_iters=10, epsilon=1e-6, seed=0):
        self.features = features
        self.num_samples, self.num_features = self.features.shape
        self.labels = labels
        self.num_classes = len(np.unique(self.labels))
        self.p = p
        self.eta = eta
        self.max_iters = max_iters
        self.epsilon = epsilon
        self.seed = seed
        self.proto = None

    def minkowski_distance(self, x, y=0):
        return np.linalg.norm(x - y, ord=self.p)

    def fit(self):
        random.seed(self.seed)
        # 每类中随机选择一个原型向量
        self.proto = np.array([random.choice(self.features[self.labels == c]) for c in range(self.num_classes)])

        for i in range(self.max_iters):
            index = random.randint(0, self.num_samples-1)    # 随机选取一个样本
            xj = self.features[index]          # 样本特征
            yj = self.labels[index]            # 样本标签
            dist = [self.minkowski_distance(d) for d in xj - self.proto]   # 计算到各个原型向量的距离
            min_idx = np.argmin(dist)
            delta = self.eta * (xj - self.proto[min_idx])
            if yj == min_idx:
                # 更新原型向量
                self.proto[min_idx] += delta
            else:
                self.proto[min_idx] -= delta
                # 更新原型向量

            if self.minkowski_distance(delta) < self.epsilon:
                break

    def visualization(self):
        current_palette = sns.color_palette()
        sns.set_theme(context="talk")
        clu_idx = np.zeros_like(self.labels, dtype=np.int64)
        for i, x in enumerate(self.features):
            dist = [self.minkowski_distance(d) for d in x - self.proto]
            clu_idx[i] = np.argmin(dist)

        for c in range(self.num_classes):
            x = self.features[clu_idx == c]
            sns.scatterplot(x=x[:, 0], y=x[:, 1], alpha=0.8, color=current_palette[c])
            sns.scatterplot(x=[self.proto[c][0]], y=[self.proto[c][1]], color=current_palette[c], marker='+', s=500)
        plt.show()


def order_type(v: str):
    if v.lower() in ("-inf", "inf"):
        return -np.inf if v.startswith("-") else np.inf
    else:
        try:
            return float(v)
        except ValueError:
            raise argparse.ArgumentTypeError("Unsupported value encountered")


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="LVQ Demo")
    parser.add_argument("-m", "--max-iters", type=int, default=400, help="Maximum iterations")
    parser.add_argument("-p", type=order_type, default=2., help="Distance measurement")
    parser.add_argument("--eta", type=float, default=0.1, help="Learning rate")
    parser.add_argument("--eps", type=float, default=1e-6)
    parser.add_argument("--seed", type=int, default=110, help="Random seed")
    parser.add_argument("--dataset", type=str, default="./lvq.1.csv", help="Path to dataset")
    args = parser.parse_args()
    df = pd.read_csv(args.dataset, header=None)
    features = df.iloc[:, [0, 1]].to_numpy()
    labels = df.iloc[:, 2].to_numpy()

    model = LVQ(features, labels, p=args.p, eta=args.eta, max_iters=args.max_iters, epsilon=args.eps, seed=args.seed)
    model.fit()
    model.visualization()
相关推荐
古希腊掌管学习的神38 分钟前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca40 分钟前
洛谷 P1706 全排列问题 C语言
算法
浊酒南街1 小时前
决策树(理论知识1)
算法·决策树·机器学习
就爱学编程1 小时前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon1 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客5201 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn