贝叶斯个性化排序损失函数

贝叶斯个性化排名(Bayesian Personalized Ranking, BPR)是一种用于推荐系统的机器学习方法,旨在为用户提供个性化的排名列表。BPR的核心思想是通过对用户历史行为数据的分析,对用户可能喜欢和不喜欢的物品对(item pairs)进行建模,优化推荐系统的排序。

在BPR中,成对损失优化(Pairwise Loss Optimization)是一种训练方法,它关注于正确地对物品对进行排序,而不是预测单个物品的评分或偏好。具体来说,对于用户 u u u,如果我们知道用户更喜欢物品 i i i而不是物品 j j j,那么我们期望推荐系统给物品 i i i一个更高的预测分数。因此,损失函数设计为当推荐系统对于偏好对的排序不正确时,损失值会增加。

成对损失优化的主要目的是推动模型学习区分用户偏好的物品和不偏好的物品,从而可以生成反映用户个人喜好的排名列表。在实践中,这通常涉及到使用如随机梯度下降(Stochastic Gradient Descent, SGD)这样的优化算法来更新模型参数,减小成对损失。

贝叶斯个性化排名的成对损失函数通常定义为:

为什么可以这样设计损失函数?

通常在机器学习中,损失函数(Loss Function)是用来估计模型的预测与实际数据之间的不一致程度的一种衡量。损失函数的值越小,说明模型的预测性能越好,即模型的预测结果与真实情况越接近。

相关推荐
Valueyou243 分钟前
引入基于加权 IoU 的 WiseIoU 回归损失以提升 CT 图像检测鲁棒性
人工智能·python·深度学习·目标检测
BestSongC9 分钟前
基于VUE和FastAPI的行人目标检测系统
vue.js·人工智能·yolo·目标检测·fastapi
这张生成的图像能检测吗15 分钟前
(论文速读)SpiralMLP:一个轻量级的视觉MLP架构
图像处理·人工智能·深度学习·计算机视觉·mlp框架·分类、检测、分割
doubao3616 分钟前
如何在海量文献中高效筛选有价值信息
人工智能·学习·自然语言处理·aigc·ai工具·ai检索
执笔论英雄16 分钟前
【大模型训练】MTPLossLoggingHelper中get_tensor_and_context_parallel_group使用
人工智能·深度学习
美团技术团队16 分钟前
美团 LongCat Interaction 团队发布大模型交互系统技术报告 WOWService
人工智能
烤麻辣烫22 分钟前
AI(新手)
人工智能·学习·机器学习·ai编程
CoovallyAIHub26 分钟前
分割万事万物的AI,再进化!Meta SAM 3 来了,支持中文提示词!
深度学习·算法·计算机视觉
虹科网络安全29 分钟前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(1)】
人工智能·安全
G***E31635 分钟前
机器学习特征选择方法
人工智能·机器学习