贝叶斯个性化排序损失函数

贝叶斯个性化排名(Bayesian Personalized Ranking, BPR)是一种用于推荐系统的机器学习方法,旨在为用户提供个性化的排名列表。BPR的核心思想是通过对用户历史行为数据的分析,对用户可能喜欢和不喜欢的物品对(item pairs)进行建模,优化推荐系统的排序。

在BPR中,成对损失优化(Pairwise Loss Optimization)是一种训练方法,它关注于正确地对物品对进行排序,而不是预测单个物品的评分或偏好。具体来说,对于用户 u u u,如果我们知道用户更喜欢物品 i i i而不是物品 j j j,那么我们期望推荐系统给物品 i i i一个更高的预测分数。因此,损失函数设计为当推荐系统对于偏好对的排序不正确时,损失值会增加。

成对损失优化的主要目的是推动模型学习区分用户偏好的物品和不偏好的物品,从而可以生成反映用户个人喜好的排名列表。在实践中,这通常涉及到使用如随机梯度下降(Stochastic Gradient Descent, SGD)这样的优化算法来更新模型参数,减小成对损失。

贝叶斯个性化排名的成对损失函数通常定义为:

为什么可以这样设计损失函数?

通常在机器学习中,损失函数(Loss Function)是用来估计模型的预测与实际数据之间的不一致程度的一种衡量。损失函数的值越小,说明模型的预测性能越好,即模型的预测结果与真实情况越接近。

相关推荐
:mnong2 小时前
FramePack | Image to Video 项目需求设计实现分析
神经网络
郝学胜-神的一滴2 小时前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习
2401_840365212 小时前
cuda-gdb Could not find CUDA Debugger back-end.
人工智能
苍何fly2 小时前
首个国产芯片训练的多模态 SOTA 模型,已免费开源!
人工智能·经验分享
2401_841495642 小时前
具身智能:从理论到现实,人工智能的下一场革命
人工智能·算法·机器人·硬件·具身智能·通用智能·专用智能
方见华Richard2 小时前
对话量子场论:语言如何产生认知粒子V0.3
人工智能·交互·学习方法·原型模式·空间计算
wfeqhfxz25887822 小时前
基于YOLO12-A2C2f-DFFN-DYT-Mona的铁件部件状态识别与分类系统_1
人工智能·分类·数据挖掘
2501_941507942 小时前
脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案
人工智能·分类·数据挖掘
珊珊而川2 小时前
MBE(Model-based Evaluation) LLM-as-a-Judge
人工智能
想用offer打牌3 小时前
Spring AI vs Spring AI Alibaba
java·人工智能·后端·spring·系统架构