贝叶斯个性化排序损失函数

贝叶斯个性化排名(Bayesian Personalized Ranking, BPR)是一种用于推荐系统的机器学习方法,旨在为用户提供个性化的排名列表。BPR的核心思想是通过对用户历史行为数据的分析,对用户可能喜欢和不喜欢的物品对(item pairs)进行建模,优化推荐系统的排序。

在BPR中,成对损失优化(Pairwise Loss Optimization)是一种训练方法,它关注于正确地对物品对进行排序,而不是预测单个物品的评分或偏好。具体来说,对于用户 u u u,如果我们知道用户更喜欢物品 i i i而不是物品 j j j,那么我们期望推荐系统给物品 i i i一个更高的预测分数。因此,损失函数设计为当推荐系统对于偏好对的排序不正确时,损失值会增加。

成对损失优化的主要目的是推动模型学习区分用户偏好的物品和不偏好的物品,从而可以生成反映用户个人喜好的排名列表。在实践中,这通常涉及到使用如随机梯度下降(Stochastic Gradient Descent, SGD)这样的优化算法来更新模型参数,减小成对损失。

贝叶斯个性化排名的成对损失函数通常定义为:

为什么可以这样设计损失函数?

通常在机器学习中,损失函数(Loss Function)是用来估计模型的预测与实际数据之间的不一致程度的一种衡量。损失函数的值越小,说明模型的预测性能越好,即模型的预测结果与真实情况越接近。

相关推荐
忆湫淮1 分钟前
ENVI 5.6 利用现场标准校准板计算地表反射率具体步骤
大数据·人工智能·算法
lpfasd1232 分钟前
现有版权在未来的价值:AI 泛滥时代的人类内容黄金
大数据·人工智能
cyyt2 分钟前
深度学习周报(11.24~11.30)
人工智能·深度学习
丝斯20113 分钟前
AI学习笔记整理(24)—— AI核心技术(深度学习8)
人工智能·笔记·学习
腾讯云开发者8 分钟前
架构火花|一线视角下的AI:从应用边界到落地难题
人工智能
Blossom.1188 分钟前
基于Mamba-2的实时销量预测系统:如何用选择性状态空间干掉Transformer的O(n²)噩梦
人工智能·python·深度学习·react.js·机器学习·设计模式·transformer
Mintopia9 分钟前
AIGC 技术标准制定:Web 行业协同的必要性与难点
人工智能·aigc·trae
Wise玩转AI11 分钟前
Day 26|智能体的“伦理与安全边界”
人工智能·python·安全·ai·chatgpt·ai智能体
极速learner12 分钟前
n8n本地安装的两种方法:小白入门大白话版本
人工智能·prompt
_codemonster13 分钟前
深度学习实战(基于pytroch)系列(三十八)门控循环单元(GRU)从零开始实现
人工智能·深度学习·gru