第十九章 解读利用pytorch可视化特征图以及卷积核参数(工具)

介绍一种可视化feaature maps以及kernel weights的方法

推荐可视化工具TensorBoard:可以查看整个计算图的数据流向,保存再训练过程中的损失信息,准确率信息等

学习视频:

使用pytorch查看中间层特征矩阵以及卷积核参数_哔哩哔哩_bilibili

代码下载:

deep-learning-for-image-processing/pytorch_classification/analyze_weights_featuremap at master · WZMIAOMIAO/deep-learning-for-image-processing · GitHub

一、所需文件

AlexNet.pth 和 resNet34.pth 文件通过之前的训练获得

二、操作步骤

AlexNet 的中间层特征矩阵

1.在analyze_feature_map.py 文件的 out_put 处设置断点并debug,查看print model所打印的信息

  1. 打印两个层结构:第一个是features,第二个是classifier,与 alexnet_model.py文件中的所定义的层结构一一对应,如下图所示:
  1. 在 alexnet_model.py 文件的 for name, module in self.features.named_children(): 行设置断点并单步运行

得到name = 0 和卷积层conv 2d,后面以此类推

  1. 让程序接着运行到for循环处

查看out_put,是一个list,一共有三层,分别对应第一个,第二个,第三个卷积层的输出特征矩阵

5.让程序执行完

(1)输出为第一个卷积层 所输出的特征矩阵的前12个通道的特征图

通过特征图的明暗程度来理解卷积层一所关注的一些信息,亮度越高的地方就是卷积层越感兴趣的地方。

原图如下:

(2)卷积层二所输出的特征矩阵:抽象程度越来越高,有些卷积核没有起到作用

卷积层三 所输出的特征矩阵

(3)去掉cmap='gray'之后的颜色为蓝绿色

(4)如果想看更多信息,则在 alexnet_model.py 的向前传播过程中进行修改

假如要看全连接层的图像,则也要将输入的图像通过features层结构,再通过全连接层才能查看

resnet34 的中间层特征矩阵

1.修改代码并再下图处设置断点debug

可以再终端看到resnet的层结构

2.运行结果如图

明显resnet学习到的信息比 alexnet更多

有两个原因:resnet确实比alexnet更加优秀

​ resnet使用迁移学习的方法,并且预训练数据集是使用 imagenet 数据集进行训练的

3.layer1所输出的特征矩阵,明显比alexnet好很多,每一个特征层都有输出,都是有用的

AlexNet 的卷积核参数

  1. 打开 analyze_kernel_weight.py 文件

这里可以不用实例化模型,直接通过 torch.load 函数载入训练权重,因为通过 torch.load 载入后,就是一个字典类型,它的key就代表每个层结构的名称,对应的value就是每层的训练信息

  1. 通过 model.state_dict 函数获取模型中所有的可训练参数的字典,再通过keys方法获取所有的具有参数的层结构的名称

单步运行看一下weights_keys

如下图所示,weights_keys 是一个有序的keys,按照正向传播过程的顺序进行保存的

命名规则:

​ feature0,feature3,feature6,feature8,feature10等卷积层才有训练参数

​ 激活函数和最大池化下采样是没有激活函数的

3.接下来遍历 weights_keys

model.state_dict 函数获取模型中所有的可训练参数的字典信息,传入对应的key就得到了参数信息,再通过numpy方法将权值信息转化为numpy格式,方便分析

注意:卷积核通道的排列顺序是

​ kernel_number 卷积核个数,对应的输出特征矩阵的深度

​ kernel_channel 卷积核深度,对应的输入特征矩阵的深度

​ kernel_height, kernel_width,卷积核的高度和宽度

  1. 获得信息
cobol 复制代码
    # k = weight_t[0, :, :, :]  # 通过切片的方式获得信息

 

    # calculate mean, std, min, max    对所有卷积核的信息进行计算
    weight_mean = weight_t.mean()      #均值
    weight_std = weight_t.std(ddof=1)  #标准差
    weight_min = weight_t.min()        #最小值
    weight_max = weight_t.max()        #最大值

卷积层一对应的卷积核值的分布

卷积层一对应的偏置的分布

后面的都是一样的,不做展示

ResNet 的卷积核参数

1.第一个卷积层的分布

2.bn层的分布,使用bn时就不用使用偏置

weight就是下图的 参数

bias对应上图的 参数

mean对应的是均值 ,是统计得到的

方差 也是统计得到的

后面的输出都是一样的结构。

相关推荐
开源技术2 小时前
Python Pillow 优化,打开和保存速度最快提高14倍
开发语言·python·pillow
Niuguangshuo2 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火2 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887822 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a2 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily3 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15883 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01173 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
wfeqhfxz25887823 小时前
农田杂草检测与识别系统基于YOLO11实现六种杂草自动识别_1
python
星爷AG I3 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi