机器学习基础Matplotlib绘图

一、运行环境

  1. 学习工具:jupyter-notebook
  2. python版本:311
  3. 系统:Win11

二、什么是matplotlib?

matplotlib是基于python生态开发的一个可视化绘图库,它的出现让python在数据分析及机器学习方面占了重要的一部分,目前很多数据分析及机器学习相关方面的工程都有使用到这个库,并且由于其简单易用,安装简单等方面的优势深得广大开发者的喜爱。

三、安装及导入

1.安装
pip install matplotlib

  1. 导入项目

新建项目并直接import即可import matplotlib.pyplot as plt,简单易用

四、matplotlib的使用

  1. 基础使用:生成一个画布

highlighter- leaf

复制代码
#定义一个画布
#subplots(X,Y,figsize=(X,Y))
#其中figsize(X,Y) 用于定义画布的大小
fig,ax = plt.subplots(figsize = (10, 5))
plt.show()
  1. 生成多个子图(ax)

highlighter- leaf

复制代码
#subplots(X,Y)用于定义该画布有几行几列,即一个大画布fig上有多个小画布ax组成axes
fig,axes = plt.subplots(2,3,figsize = (10, 4))
plt.show()
  1. 绘制多个子图

highlighter- apache

复制代码
#绘制多个子图
fig,axes = plt.subplots(1,2,figsize=(10,4))   #绘制一个一行两列的图

x=[1,20,40,15,2]
y=[4,6,15,7,6]

#对第一个子图进行绘制
bplot1 = axes[0].plot(x,y)

#绘制第二个子图
bplot2 = axes[1].plot(y,x)
  1. 同一块画布上绘制多条函数

highlighter- apache

复制代码
#简单的线性图
# x = list(range(0,10))
# y =list(range(0,10))
# plt.plot(x,y)
plt.plot(range(12),color="red")  #等价于上面的操作
plt.plot([1,2,3])  #在现有的画布上继续绘画一条直线
  1. 放大图像(只显示函数图像的一部分)

highlighter- apache

复制代码
#原函数图像
x=[1,20,40,15,2]
y=[4,6,15,7,6]
plt.plot(x,y)

highlighter- apache

复制代码
#直接对x,y赋值
x=[1,20,40,15,2]
y=[4,6,15,7,6]
plt.plot(x,y)
#通过设定坐标轴刻度,只显示部分图形
plt.axis([0,10,0,10])   #x:[0,10],y:[0,10]
  1. 为图像添加标题横纵坐标信息
  • 添加标题和x、y名称

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
plt.plot(x,y)
  • 更改x、y轴刻度(纯数字形式)

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
#修改x轴刻度,纯数字形式
plt.xticks((0,10,20,30,40))
#修改y轴刻度,纯数字形式
plt.yticks((0,5,10,15,20))
plt.plot(x,y)
  • 更改x、y轴刻度(自定义坐标信息)

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
#自定义x轴坐标信息
plt.xticks((0,10,20,30,40),('text1','text2','text3','text4','text5'))
#自定义y轴坐标信息
plt.yticks((0,5,10,15,20),('align1','align2','align3','align4','align5'))
plt.plot(x,y)
  1. 基于axes的显示画图

highlighter- clean

复制代码
#基于 axes 的显式画图:用 Axes 画图更加直观,所以被称为“显式画图”,直接用 Figure画图,被称为 “隐式画图”
import numpy as np
x = np.linspace(-1,1,50)  #生成50个-1到1之间的数
y = x**2

fig = plt.figure()  #生成空白画布
ax = fig.add_subplot() #空白的子图

ax.plot(x,y,color="red",linewidth=4,linestyle='-.',marker='o')  #绘画一条函数图

ax.plot(y,x)  #绘画另一条函数图

ax.legend(["y=x**2","y**2=x"])   #添加图例

ax.set_title('x and y',fontsize=20)  #设置标题
ax.set_xlabel("x label")  #设置x轴名称
ax.set_ylabel("y label")  #设置y轴名称
ax.set_xlim(-1,1)  #设置x轴范围
ax.set_ylim(-1,1)  #设置y轴范围

# ax.grid(linewidth=3,linestyle=':',color='purple',alpha=0.5)

plt.show()
相关推荐
Oxo Security3 分钟前
【AI安全】检索增强生成(RAG)
人工智能·安全·网络安全·ai
少林码僧7 分钟前
2.3 Transformer 变体与扩展:BERT、GPT 与多模态模型
人工智能·gpt·ai·大模型·bert·transformer·1024程序员节
shayudiandian10 分钟前
如何使用 DeepSeek 帮助自己的工作
人工智能
程序猿追36 分钟前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
@小码农1 小时前
2025年北京海淀区中小学生信息学竞赛第一赛段试题(附答案)
人工智能·python·算法·蓝桥杯
程序猿追1 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构
York·Zhang1 小时前
Ollama:在本地运行大语言模型的利器
人工智能·语言模型·自然语言处理·ollama
reesn1 小时前
nanochat大语言模型讲解一
人工智能·语言模型·自然语言处理
张较瘦_2 小时前
[论文阅读] AI + 软件工程 | 3340个Python ML项目实证:PyQu工具+61种代码变更,精准提升软件质量!
论文阅读·人工智能·软件工程
m0_748248022 小时前
C++20 协程:在 AI 推理引擎中的深度应用
java·c++·人工智能·c++20