机器学习基础Matplotlib绘图

一、运行环境

  1. 学习工具:jupyter-notebook
  2. python版本:311
  3. 系统:Win11

二、什么是matplotlib?

matplotlib是基于python生态开发的一个可视化绘图库,它的出现让python在数据分析及机器学习方面占了重要的一部分,目前很多数据分析及机器学习相关方面的工程都有使用到这个库,并且由于其简单易用,安装简单等方面的优势深得广大开发者的喜爱。

三、安装及导入

1.安装
pip install matplotlib

  1. 导入项目

新建项目并直接import即可import matplotlib.pyplot as plt,简单易用

四、matplotlib的使用

  1. 基础使用:生成一个画布

highlighter- leaf

复制代码
#定义一个画布
#subplots(X,Y,figsize=(X,Y))
#其中figsize(X,Y) 用于定义画布的大小
fig,ax = plt.subplots(figsize = (10, 5))
plt.show()
  1. 生成多个子图(ax)

highlighter- leaf

复制代码
#subplots(X,Y)用于定义该画布有几行几列,即一个大画布fig上有多个小画布ax组成axes
fig,axes = plt.subplots(2,3,figsize = (10, 4))
plt.show()
  1. 绘制多个子图

highlighter- apache

复制代码
#绘制多个子图
fig,axes = plt.subplots(1,2,figsize=(10,4))   #绘制一个一行两列的图

x=[1,20,40,15,2]
y=[4,6,15,7,6]

#对第一个子图进行绘制
bplot1 = axes[0].plot(x,y)

#绘制第二个子图
bplot2 = axes[1].plot(y,x)
  1. 同一块画布上绘制多条函数

highlighter- apache

复制代码
#简单的线性图
# x = list(range(0,10))
# y =list(range(0,10))
# plt.plot(x,y)
plt.plot(range(12),color="red")  #等价于上面的操作
plt.plot([1,2,3])  #在现有的画布上继续绘画一条直线
  1. 放大图像(只显示函数图像的一部分)

highlighter- apache

复制代码
#原函数图像
x=[1,20,40,15,2]
y=[4,6,15,7,6]
plt.plot(x,y)

highlighter- apache

复制代码
#直接对x,y赋值
x=[1,20,40,15,2]
y=[4,6,15,7,6]
plt.plot(x,y)
#通过设定坐标轴刻度,只显示部分图形
plt.axis([0,10,0,10])   #x:[0,10],y:[0,10]
  1. 为图像添加标题横纵坐标信息
  • 添加标题和x、y名称

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
plt.plot(x,y)
  • 更改x、y轴刻度(纯数字形式)

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
#修改x轴刻度,纯数字形式
plt.xticks((0,10,20,30,40))
#修改y轴刻度,纯数字形式
plt.yticks((0,5,10,15,20))
plt.plot(x,y)
  • 更改x、y轴刻度(自定义坐标信息)

highlighter- apache

复制代码
x=[1,20,40,15,2]
y=[4,6,15,7,6]
#添加标题
plt.title("matplotlibTest")
#添加x,y轴名称
plt.xlabel("Feature")
plt.ylabel("shape")
#自定义x轴坐标信息
plt.xticks((0,10,20,30,40),('text1','text2','text3','text4','text5'))
#自定义y轴坐标信息
plt.yticks((0,5,10,15,20),('align1','align2','align3','align4','align5'))
plt.plot(x,y)
  1. 基于axes的显示画图

highlighter- clean

复制代码
#基于 axes 的显式画图:用 Axes 画图更加直观,所以被称为“显式画图”,直接用 Figure画图,被称为 “隐式画图”
import numpy as np
x = np.linspace(-1,1,50)  #生成50个-1到1之间的数
y = x**2

fig = plt.figure()  #生成空白画布
ax = fig.add_subplot() #空白的子图

ax.plot(x,y,color="red",linewidth=4,linestyle='-.',marker='o')  #绘画一条函数图

ax.plot(y,x)  #绘画另一条函数图

ax.legend(["y=x**2","y**2=x"])   #添加图例

ax.set_title('x and y',fontsize=20)  #设置标题
ax.set_xlabel("x label")  #设置x轴名称
ax.set_ylabel("y label")  #设置y轴名称
ax.set_xlim(-1,1)  #设置x轴范围
ax.set_ylim(-1,1)  #设置y轴范围

# ax.grid(linewidth=3,linestyle=':',color='purple',alpha=0.5)

plt.show()
相关推荐
Msshu1231 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一3 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
ACP广源盛139246256734 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超4 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶6 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309166 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习
老兵发新帖6 小时前
主流神经网络快速应用指南
人工智能·深度学习·神经网络
AI量化投资实验室7 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习
java_logo7 小时前
vllm-openai Docker 部署手册
运维·人工智能·docker·ai·容器
倔强青铜三7 小时前
苦练Python第67天:光速读取任意行,linecache模块解锁文件处理新姿势
人工智能·python·面试