深度学习中的Transformer机制

Transformer 是一种深度学习模型结构,最初由Vaswani等人于2017年提出,用于自然语言处理任务,尤其是机器翻译。Transformer 引入了自注意力机制(self-attention mechanism),这是其在处理序列数据时的关键创新。

以下是 Transformer 模型的主要组成部分和机制:

  1. 自注意力机制(Self-Attention):

    • 自注意力机制允许模型在处理序列数据时为每个位置分配不同的注意力权重。给定一个输入序列,自注意力机制可以计算每个位置与其他所有位置之间的注意力权重。这使得模型能够更好地捕捉序列中不同位置之间的依赖关系。
  2. 多头注意力(Multi-Head Attention):

    • 为了增强模型对不同信息尺度的表示能力,Transformer 引入了多头注意力机制。通过使用多个注意力头,模型可以学习多个不同的注意力权重,从而捕捉不同层次和方向的语义信息。
  3. 位置编码(Positional Encoding):

    • 由于 Transformer 不包含序列顺序信息,为了将位置信息引入模型,位置编码被加到输入嵌入中。这允许模型区分序列中不同位置的单词。
  4. 编码器-解码器结构:

    • Transformer 通常由编码器和解码器组成,用于处理不同任务,例如机器翻译。编码器用于处理输入序列,解码器用于生成输出序列。它们都包含多个层,每个层都包含自注意力机制和前馈神经网络。
  5. 残差连接和层归一化:

    • 在每个子层(如自注意力和前馈神经网络)的输入和输出之间都存在残差连接,有助于防止梯度消失问题。此外,层归一化用于规范每个子层的输出。

Transformer 的创新极大地改变了自然语言处理领域,使得模型在处理长序列和捕捉全局依赖关系方面更为有效。此外,由于其通用性,Transformer 的思想也被应用于其他领域,例如计算机视觉和强化学习。

相关推荐
2401_8288906421 分钟前
正/余弦位置编码 Sinusoidal Encoding
python·自然语言处理·transformer·embedding
MoonOutCloudBack24 分钟前
VeRL 框架 RL 微调大语言模型,algorithm.use_pf_ppo 参数详解
人工智能·机器学习·语言模型·自然语言处理
hhzz31 分钟前
【Vision人工智能设计 】Wan(万相) 内容创作平台与能力
人工智能·阿里·视觉大模型·wan·万相
黑巧克力可减脂32 分钟前
Vibe Coding重构CRM:以AI编程之术,破传统管理之困,承革新致远之道
人工智能·重构·软件工程·ai编程
wuxi_joe33 分钟前
工业信息化与AI:制造业配置能力的重构
人工智能·重构
heimeiyingwang40 分钟前
从 0 到 1:企业 AI 战略规划与落地路线图
大数据·人工智能
新缸中之脑44 分钟前
让AI代理演示他们的工作
人工智能
专注VB编程开发20年1 小时前
百度AI垃圾说高通占小米股份15%雷总23%
人工智能·百度
Tadas-Gao1 小时前
架构逆转向量:AI时代规范驱动开发的范式重构与实践图谱
人工智能·云原生·重构·架构·系统架构·大模型
小程故事多_801 小时前
自省式检索Self-RAG,让AI学会“知之为知之”,构建可信赖的智能问答闭环
人工智能·aigc