深度学习中的Transformer机制

Transformer 是一种深度学习模型结构,最初由Vaswani等人于2017年提出,用于自然语言处理任务,尤其是机器翻译。Transformer 引入了自注意力机制(self-attention mechanism),这是其在处理序列数据时的关键创新。

以下是 Transformer 模型的主要组成部分和机制:

  1. 自注意力机制(Self-Attention):

    • 自注意力机制允许模型在处理序列数据时为每个位置分配不同的注意力权重。给定一个输入序列,自注意力机制可以计算每个位置与其他所有位置之间的注意力权重。这使得模型能够更好地捕捉序列中不同位置之间的依赖关系。
  2. 多头注意力(Multi-Head Attention):

    • 为了增强模型对不同信息尺度的表示能力,Transformer 引入了多头注意力机制。通过使用多个注意力头,模型可以学习多个不同的注意力权重,从而捕捉不同层次和方向的语义信息。
  3. 位置编码(Positional Encoding):

    • 由于 Transformer 不包含序列顺序信息,为了将位置信息引入模型,位置编码被加到输入嵌入中。这允许模型区分序列中不同位置的单词。
  4. 编码器-解码器结构:

    • Transformer 通常由编码器和解码器组成,用于处理不同任务,例如机器翻译。编码器用于处理输入序列,解码器用于生成输出序列。它们都包含多个层,每个层都包含自注意力机制和前馈神经网络。
  5. 残差连接和层归一化:

    • 在每个子层(如自注意力和前馈神经网络)的输入和输出之间都存在残差连接,有助于防止梯度消失问题。此外,层归一化用于规范每个子层的输出。

Transformer 的创新极大地改变了自然语言处理领域,使得模型在处理长序列和捕捉全局依赖关系方面更为有效。此外,由于其通用性,Transformer 的思想也被应用于其他领域,例如计算机视觉和强化学习。

相关推荐
CM莫问8 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
七牛云行业应用8 小时前
告别RLHF?DeepSeek过程奖励(PRM)架构解析与推理数据流设计
人工智能·强化学习·大模型架构·deepseek
xcLeigh8 小时前
AI的提示词专栏:Prompt 与传统机器学习特征工程的异同
人工智能·机器学习·ai·prompt·提示词
DuHz8 小时前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
诚丞成8 小时前
机器学习——生成对抗网络(GANs):原理、进展与应用前景分析
人工智能·机器学习·生成对抗网络
盼小辉丶8 小时前
图机器学习(7)——图神经网络 (Graph Neural Network, GNN)
人工智能·神经网络·图神经网络·图机器学习
码字的字节8 小时前
机器学习中的可解释性:深入理解SHAP值及其应用
人工智能·shap
爱数学的程序猿8 小时前
机器学习“捷径”:自动特征工程全面解析
人工智能·机器学习
一个处女座的程序猿8 小时前
AI:新书预告—从机器学习避坑指南(分类/回归/聚类/可解释性)到大语言模型落地手记(RAG/Agent/MCP),一场耗时5+3年的技术沉淀—“代码可跑,经验可抄”—【一个处女座的程序猿】携两本AI
人工智能·机器学习·大语言模型
幸福拾荒者8 小时前
Lyra提示词优化专家
人工智能