redis优化秒杀
- [1. 异步秒杀思路](#1. 异步秒杀思路)
-
- [1.1 在redis存入库存和订单信息](#1.1 在redis存入库存和订单信息)
- [1.2 具体流程图](#1.2 具体流程图)
- [2. 实现](#2. 实现)
-
- [2.1 总结](#2.1 总结)
- [3. Redis的消息队列](#3. Redis的消息队列)
-
- [3.1 基于list实现消息队列](#3.1 基于list实现消息队列)
- [3.2 基于PubSub实现消息队列](#3.2 基于PubSub实现消息队列)
- [3.3 基于stream实现消息队列](#3.3 基于stream实现消息队列)
-
- [3.3.1 stream的单消费模式](#3.3.1 stream的单消费模式)
- [3.3.2 stream的消费者组模式](#3.3.2 stream的消费者组模式)
- [3.4 基于stream消息队列实现异步秒杀](#3.4 基于stream消息队列实现异步秒杀)
本文为学习redis时做的笔记,学习内容来自 黑马程序员Redis入门到实战教程,该教程是循序渐进的,所以不是一上来就讲完最后的解决方案了,请耐心看完
1. 异步秒杀思路
这是我们原本的秒杀思路,其中的流程都要经过mysql数据库,而mysql数据库的并发性能不是很好,而且为了避免线程安全问题,还加入了分布式锁,所以整个流程的性能不好,现在我们要去优化它。
我们可以把这整个流程比作一个餐馆点菜的过程,前台点菜并将菜品写在小票上,给顾客一份,后厨一份,后厨根据小票的内容依次做菜
根据这个例子,我们的流程也可以分为两个部分:
- 第一部分是判断秒杀资格(判断秒杀库存和校验一人一单)
- 第二部分是减库存创建订单流程
两个部分各自为一个线程,主线程判断秒杀资格,如果用户有资格,就开启一个独立线程完成耗时较久的第二部分
同时,我们也要优化判断秒杀资格的性能,将库存和订单存入redis中,如果判断用户有资格,先将优惠券id,用户id、订单id保存在阻塞队列中,并将订单id返回给用户,用户可以通过这个订单id完成支付操作,虽然此时还没有创建订单,但是在队列中迟早会创建,之后开启独立线程读取队列中的信息,完成下单。
现在的业务流程变成了在redis中判断秒杀资格,保存信息在队列中并返回订单id,性能和吞吐量大大提高
1.1 在redis存入库存和订单信息
现在讨论这两个东西需要什么样的结构去存储
因为库存只是一个数值,我们使用redis中的string类型去存储,key是优惠券的id,value是库存
到时只需判断库存是否大于0,如果用户有资格,库存要减一,相当于在redis中预减库存
因为需要一个优惠券id(key)能存很多用户id,而且用户id不能重复,所以订单信息我们使用set结构存储
到时只需看value中是否有该用户id来判断该用户是否下过单
1.2 具体流程图
为了保证过程的原子性,需要用到lua脚本,通过执行lua脚本后的结果来返回异常信息或者订单id,这样创建订单的时效性就没有那么强了,完全可以照着数据库能承受的范围去执行写的操作,用户只需要订单id就能完成支付操作
2. 实现
需求:
- 新增秒杀优惠券的同时,将优惠券信息保存在redis中
修改添加秒杀优惠券的方法,将优惠券信息保存在redis中
java
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存优惠券信息到redis
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
添加一个秒杀优惠券
json
{
"title": "120元代金券",
"beginTime": "2023-11-01T01:11:11",
"actualValue": 12000,
"shopId": 1,
"subTitle": "周一至周五均可使用",
"payValue": 10000,
"stock": 100,
"endTime": "2024-11-01T01:11:11",
"type": 1,
"rules": "全场通用\\n无需预约\\n可无限叠加\\不兑现、不找零\\n仅限堂食"
}
- 基于lua脚本,判断秒杀库存、一人一单、决定用户是都抢购成功
写lua脚本
- 先写参数列表,再组合成key,最后写逻辑
lua
-- 1. 参数列表
-- 1.1 优惠券id
local voucherId = ARGV[1];
-- 1.2 用户id
local userId = ARGV[2];
-- 2. key
-- 2.1 库存key
local stockKey = "seckill:stock" .. voucherId;
-- 2.2 订单key
local orderKey = "seckill:order" .. voucherId;
-- 3. 脚本业务
-- 判断库存是否充足
if (tonumber(redis.call('get',stockKey)) <= 0) then
-- 库存不足
return 1
end
-- 判断用户是否下单
if (redis.call('sismember',orderKey,userId) == 1) then
-- 用户下过单
return 2
end
-- 扣减库存
redis.call('incrby',stockKey,-1);
-- 下单,保存用户id到set集合
redis.call('sadd',orderKey,userId);
重写秒杀逻辑
- 调用lua脚本,根据返回的数字判断,并返回订单号
java
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
//初始化脚本
static {
SECKILL_SCRIPT = new DefaultRedisScript();
//读取文件位置,classpath就是resource
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
@Override
public Result seckillVoucher(Long voucherId) {
// 获取用户id
Long userId = UserHolder.getUser().getId();
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(),userId.toString()
);
int intValue = result.intValue();
//2. 判断结果是否为0
if (intValue != 0) {
return Result.fail(intValue == 1 ? "库存不足" : "不要重复下单");
}
//3. 将优惠券id,用户id、订单id保存在阻塞队列中
//TODO 将优惠券id,用户id、订单id保存在阻塞队列中
long orderId = redisIdWorker.nextId("order");
//4. 返回订单id
return Result.ok(orderId);
}
- 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
java
//阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
阻塞队列BlockingQueue,当一个线程尝试从一个阻塞队列中获取元素,如果队列中没有元素,这个线程就会被阻塞,当队列中有元素时就会被唤醒并获取元素
seckillVoucher中添加:
java
//3.2 放入阻塞队列中
orderTasks.add(order);
- 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
- 建立线程池,当这个类初始化完线程就去执行VoucherOrderHandler类中的run方法,不断获取队列中的订单信息,去创建订单
@PostConstruct 注解效果是当前类初始化完就去执行
java
//线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//类加载完就执行
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单异常:" + e);
}
}
}
}
- 执行handleVoucherOrder方法,获取锁,最后执行创建订单方法
注1:在这个方法中不能使用threadlocal去获取用户信息,因为是异步下单,这是一个子线程,不是主线程,没有用户的信息,所以从订单中获取用户id
注2:与上同理,在这个子线程中也无法获取到代理对象,将代理对象设置为成员变量,再从主线程中获取到代理对象
java
private void handleVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
//创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
//获取锁方法
boolean lockFlag = redisLock.tryLock();
//判断是否获取成功
if (!lockFlag) {
log.error("不要重复下单");
return;
}
//事务方法执行起来可能会出现异常,但最后都要释放锁,所以try-catch起来
try {
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
- 创建订单逻辑
java
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
//5.一人一单
Long userId = UserHolder.getUser().getId();
//查询
Integer count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
//判断订单是否存在
if (count > 0) {
log.error("用户已经购买过一次");
return;
}
//6.扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock-1")
.eq("voucher_id", voucherOrder.getVoucherId())
.gt("stock", 0)
.update();
if (!success) {
log.error("不要重复下单");
return;
}
save(voucherOrder);
}
2.1 总结
整个流程是:
- 主线程:
发送请求进入seckillVoucher方法,先判断用户是否有秒杀的资格(通过lua脚本),然后创建订单(将用户id、优惠券id、订单id放进订单里),将订单放入阻塞队列
- 子线程:
在类初始化的时候去执行线程池,线程池的任务是是不断地从队列中获取订单信息,然后去创建订单。
创建订单先获取锁,再判断一人一单,减库存,最后执行添加订单方法
完整代码:
java
/**
* <p>
* 服务实现类
* </p>
*
* @author 虎哥
* @since 2021-12-22
*/
@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Autowired
private ISeckillVoucherService seckillVoucherService;
@Autowired
private RedisIdWorker redisIdWorker;
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Autowired
private RedissonClient redissonClient;
private IVoucherOrderService proxy;
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
//初始化脚本
static {
SECKILL_SCRIPT = new DefaultRedisScript();
//读取文件位置,classpath就是resource
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
//阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
//线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//类加载完就执行
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单异常:" + e);
}
}
}
}
private void handleVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
//创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
//获取锁方法
boolean lockFlag = redisLock.tryLock();
//判断是否获取成功
if (!lockFlag) {
log.error("不要重复下单");
return;
}
//事务方法执行起来可能会出现异常,但最后都要释放锁,所以try-catch起来
try {
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
@Override
public Result seckillVoucher(Long voucherId) {
// 获取用户id
Long userId = UserHolder.getUser().getId();
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString()
);
int intValue = result.intValue();
//2. 判断结果是否为0
if (intValue != 0) {
return Result.fail(intValue == 1 ? "库存不足" : "不要重复下单");
}
//3. 将优惠券id,用户id、订单id保存在阻塞队列中
//3.1.创建订单
VoucherOrder order = new VoucherOrder();
//3.1.1 订单id
long orderId = redisIdWorker.nextId("order");
order.setId(orderId);
//3.1.2 用户id
order.setUserId(userId);
//3.1.3 优惠券id
order.setVoucherId(voucherId);
//3.2 放入阻塞队列中
orderTasks.add(order);
//3.3 获取当前的代理对象(事物)
proxy = (IVoucherOrderService) AopContext.currentProxy();
//4. 返回订单id
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
//5.一人一单
Long userId = voucherOrder.getUserId();
//查询
Integer count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
//判断订单是否存在
if (count > 0) {
log.error("用户已经购买过一次");
return;
}
//6.扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock-1")
.eq("voucher_id", voucherOrder.getVoucherId())
.gt("stock", 0)
.update();
if (!success) {
log.error("不要重复下单");
return;
}
save(voucherOrder);
}
}
测试:
现在我们的阻塞队列使用的是jvm的内存,将来有无数的请求进来,内存可能会满,而且如果服务重启或者宕机,订单信息就消失了,可能会出现一些问题,接下来学习一下redis的消息队列
3. Redis的消息队列
消息队列,字面意思就是存放消息的队列,最简单的消息队列包含三个角色
- 生产者:发送消息到消息队列
- 消息队列:存储和管理消息,也称为消息代理
- 消费者:从消息队列获取消息并处理消息
市面上有很多的消息队列的产品,但是搭建他们也是需要成本的,既然我们已经搭建起了redis集群,为了减少成本,可以使用redis提供的三种不同的方式
- list结构:基于list结构模拟消息队列
- PubSub:订阅发布,基本的点对点消息模型
- Stream:比较完善的消息队列模型
3.1 基于list实现消息队列
Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用: LPUSH 结合 RPOP、或者 RPUSH 结合LPOP来实现。
不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像VM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP 或者BLPOP 来实现阻塞效果。
优点:
- 利用Redis存储,不受限于JVM内存上限
- 基于Redis的持久化机制,数据安全性有保证
- 可以满足消息有序性
缺点:
- 无法避免消息丢失
- 只支持单消费者
3.2 基于PubSub实现消息队列
Pubsub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息
- SUBSCRIBE channel[channell : 订阅一个或多个频道
- PUBLISH channel msg : 向一个频道发送消息
- PSUBSCRIBE pattern[pattern]: 订与pattern格式匹配的所有频道
优点:
- 采用发布订阅模型,支持多生产、多消费
缺点:
- 不支持数据持久化
- 无法避免消息丢失
- 消息堆积有上限,超出时数据丢失
3.3 基于stream实现消息队列
3.3.1 stream的单消费模式
Stream是Redis5.0引入的一种新数据类型,可以实现一个功能非常完善的消息队列
- 发送消息的命令:
- 中间的内容都是可选。红框标注的基本可以不用管;绿框用来设置消息队列的最大消息数量;黄框用来设置消息的id,*代表redis自动生成;蓝框是队列中的消息内容
示例:
xadd users * name zhuyi love lvhan
返回id
- 查看队列中消息数量的命令
xlen key
示例:
- 读取队列中消息的命令
- [COUNT count] 是每次读取消息的最大数量
- [BLOCK milliseconds] 当没消息时,是否阻塞及阻塞时长
- STREAMS key 要从哪个队列开始读,key就是队列名
- ID 起始id,只返回大于该id的消息。0:代表从第一个消息开始,$:代表从最新的消息开始
示例:
从第一个消息开始读
因为消息已经读过,没有最新的消息,所以读不出来
特点:
- 消息可回溯
- 一个消息可以被多个消费者读取
- 可以阻塞读取
- 有消息漏读的风险。使用$,在读一条消息的时候,有超过一条以上的消息进入队列,只会读取最后一条
3.3.2 stream的消费者组模式
消费者组,将多个消费者划分到一个组中,监听同一个队列,有以下好处:
- 消息分流:队列中的消息会分流给组内的不同消费者,而不是重复消费,从而加快消息处理的速度。如果想让一个消息被多个消费者消费,可以多加几个组
- 消息标识:消费者组会维护一个标识,记录最后一个被处理的消息,哪怕消费者宕机重启,还会从标识之后读取消息,确保每一个消息都会被消费
- 消息确认:消费者获取消息后,消息处于pending(待处理)状态,并存入一个pending-list。当处理完成后需要通过XACK来确认消息,标记消息为已处理,才会从pending-list移除,保证所有的消息只要被获取到了,就能至少被消费一次
- 创建消费者组:
- key:队列名称
- groupName:消费者组名称
- ID:起始ID标识,$代表队列中最新的消息,0则代表队列中第一个消息
- MKSTREAM:队列不存在时自动创建队列
其他常见命令:
示例:
- 从消费者组读取消息
- group:消费组名称
- consumer:消费者名称,如果消费者不存在,会自动创建一个消费者
- count:本次查询的最大数量
- BLOCK millisecond:当没有消息时最长等待时间
- NOACK:无需手动ACK,获取到消息后自动确认
- STREAMS key:指定队列名称
- ID:获取消息的起始id:1. ">":从下一个未消费的消息开始。2. 其他:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始
示例:
- 确认消息
我们获取到消息消费后,一定要确认它,把他从pending-list中移除
- key:队列名称
- group:消费组名称
- ID:获取消息的起始id:1. ">":从下一个未消费的消息开始。2. 其他:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始
示例:
消费者监听消息的基本思路:
特点:
- 消息可回溯
- 可以多消费者争抢消息,加快消费速度
- 可以阻塞读取
- 没有消息漏读的风险
- 有消息确认机制,保证消息至少被消费一次
如果你的公司业务比较庞大,对消息队列要求比较严格,还是建议使用更专业的消息队列,如rabbitmq等,但如果是中小型公司,对消息队列需要没那么大,redis的stream就已经能满足需求了
3.4 基于stream消息队列实现异步秒杀
- 创建一个Stream类型的消息队列,定义为stream.orders,这里直接在客户端完成了
java
XGROUP CREATE stream.orders g1 0 mkstream
- 修改之前的秒杀下单lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包括voucherId、userId、orderId
修改lua脚本:
主要添加了一个订单id的参数,在业务的最后向队列发送消息
lua
-- 1. 参数列表
-- 1.1 优惠券id
local voucherId = ARGV[1]
-- 1.2 用户id
local userId = ARGV[2]
-- 1.3 订单id
local orderId = ARGV[3]
-- 2. key
-- 2.1 库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2 订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3. 脚本业务
-- 判断库存是否充足
if (tonumber(redis.call('get',stockKey)) <= 0) then
-- 库存不足
return 1
end
-- 判断用户是否下单
if (redis.call('sismember',orderKey,userId) == 1) then
-- 用户下过单
return 2
end
-- 扣减库存
redis.call('incrby',stockKey,-1);
-- 下单,保存用户id到set集合
redis.call('sadd',orderKey,userId);
-- 发送消息
redis.call('xadd','stream.orders','*','voucherId',voucherId,'userId',userId,'id',orderId)
return 0
修改一下调用lua脚本的逻辑:
新添加一个订单id的参数
java
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(),String.valueOf(orderId)
);
int intValue = result.intValue();
- 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单
在原有的线程任务逻辑上修改,从消息队列中获取订单信息,判断一下订单信息是否为空,如果为空,说明没有消息,继续下一次循环,如果有,去解析数据,拿到订单,通过以前写过的createVoucherOrder()方法来创建订单,最后一定要确认消息,将消息从pending-list中移除。
如果在执行时出现了错误或者服务宕机,通过handlePendingList()方法处理pending-list中已消费但未确认的订单,这里如果出现异常,就不用再调用这个方法了
java
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
handleVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("stream.orders", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
handlePendingList();
}
}
}
private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
handleVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("stream.orders", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
}
XACK确认消息:
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());