python实现数值积分

目录

1、求解问题

2、求解原理

3、python实现


1、求解问题

2、求解原理

高斯-勒让德数值积分是一种有效的数值积分方法,它结合了高斯点和勒让德函数来计算一维函数的积分。

高斯-勒让德求积公式在给定的积分区间[a, b]上,通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。这些高斯点和权重系数是通过将给定的函数展开为勒让德多项式,并使用特定的求积公式来得到的。

高斯-勒让德求积公式具有很高的精度,特别是对于一些难以使用其他方法积分的函数。它的优点在于,与其他的数值积分方法相比,它通常能够提供更精确的结果,而且对于某些函数,它的计算速度也非常快。

高斯-勒让德数值积分的原理基于高斯积分和勒让德多项式。高斯积分是一种精度很高的插值型数值积分方法,它通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。勒让德多项式是一类定义在区间[-1, 1]上的多项式,它们可以被展开为无穷级数,也可以被用来近似计算一些函数的积分。

通过将给定的函数展开为勒让德多项式,并使用特定的求积公式,可以将高斯点和权重系数计算出来,从而得到积分的近似值。这种方法适用于各种不同类型的函数,包括多变量函数、三角函数、指数函数等等。

3、python实现

python 复制代码
from __future__ import division
import numpy as np
#定义一重积分函数
def gl_quad1d(fun, n, x_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if not callable(fun):
        return (b - a) * fun
​
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 2. * (b - a) * fun((b - a) * v / 2. + (a + b) / 2., *args) * w[i]
             for i, v in enumerate(loc))
        return sum(s)
​
#定义二重积分函数
def gl_quad2d(fun, n, x_lim=None, y_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 4. * (b - a) * (d - c) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                               (d - c) * v2 / 2. + (c + d) / 2.), *args) * w[i] * w[j]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc))
        return sum(s)
​
#定义三重积分函数
def gl_quad3d(fun, n, x_lim=None, y_lim=None, z_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
    if z_lim is None:
        e, f = -1, 1
    else:
        e, f = z_lim[0], z_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * (f - e) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 8. * (b - a) * (d - c) * (f - e) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                                         (d - c) * v2 / 2. + (c + d) / 2.,
                                                         (f - e) * v3 / 2. + (e + f) / 2.), *args) * w[i] * w[j] * w[k]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc)
             for k, v3 in enumerate(loc))
        return sum(s)
​
​
def fun1(x):
    return 1./(1+x**2)
def fun2(x):
    return (1+x[0]**2+x[1])**0.5
def fun3(x, a, b):
    return a * x[0] * x[1] * np.e ** (b * x[2])
​
​
if __name__ == "__main__":
    res1=gl_quad1d(fun1,5)
    res2=gl_quad2d(fun2, 3)
    res3=gl_quad3d(fun3, 3, x_lim=[0,1], y_lim=[-1,0], args=(1,1))
    print(res1)
    print(res2)
    print(res3)
​

1.5711711711711713

4.443748541600919

-0.5875842321700031

相关推荐
AIAdvocate5 分钟前
Pandas_数据结构详解
数据结构·python·pandas
小言从不摸鱼7 分钟前
【AI大模型】ChatGPT模型原理介绍(下)
人工智能·python·深度学习·机器学习·自然语言处理·chatgpt
jiao0000131 分钟前
数据结构——队列
c语言·数据结构·算法
迷迭所归处2 小时前
C++ —— 关于vector
开发语言·c++·算法
FreakStudio2 小时前
全网最适合入门的面向对象编程教程:50 Python函数方法与接口-接口和抽象基类
python·嵌入式·面向对象·电子diy
leon6252 小时前
优化算法(一)—遗传算法(Genetic Algorithm)附MATLAB程序
开发语言·算法·matlab
CV工程师小林2 小时前
【算法】BFS 系列之边权为 1 的最短路问题
数据结构·c++·算法·leetcode·宽度优先
Navigator_Z2 小时前
数据结构C //线性表(链表)ADT结构及相关函数
c语言·数据结构·算法·链表
Aic山鱼3 小时前
【如何高效学习数据结构:构建编程的坚实基石】
数据结构·学习·算法
天玑y3 小时前
算法设计与分析(背包问题
c++·经验分享·笔记·学习·算法·leetcode·蓝桥杯