python实现数值积分

目录

1、求解问题

2、求解原理

3、python实现


1、求解问题

2、求解原理

高斯-勒让德数值积分是一种有效的数值积分方法,它结合了高斯点和勒让德函数来计算一维函数的积分。

高斯-勒让德求积公式在给定的积分区间[a, b]上,通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。这些高斯点和权重系数是通过将给定的函数展开为勒让德多项式,并使用特定的求积公式来得到的。

高斯-勒让德求积公式具有很高的精度,特别是对于一些难以使用其他方法积分的函数。它的优点在于,与其他的数值积分方法相比,它通常能够提供更精确的结果,而且对于某些函数,它的计算速度也非常快。

高斯-勒让德数值积分的原理基于高斯积分和勒让德多项式。高斯积分是一种精度很高的插值型数值积分方法,它通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。勒让德多项式是一类定义在区间[-1, 1]上的多项式,它们可以被展开为无穷级数,也可以被用来近似计算一些函数的积分。

通过将给定的函数展开为勒让德多项式,并使用特定的求积公式,可以将高斯点和权重系数计算出来,从而得到积分的近似值。这种方法适用于各种不同类型的函数,包括多变量函数、三角函数、指数函数等等。

3、python实现

python 复制代码
from __future__ import division
import numpy as np
#定义一重积分函数
def gl_quad1d(fun, n, x_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if not callable(fun):
        return (b - a) * fun
​
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 2. * (b - a) * fun((b - a) * v / 2. + (a + b) / 2., *args) * w[i]
             for i, v in enumerate(loc))
        return sum(s)
​
#定义二重积分函数
def gl_quad2d(fun, n, x_lim=None, y_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 4. * (b - a) * (d - c) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                               (d - c) * v2 / 2. + (c + d) / 2.), *args) * w[i] * w[j]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc))
        return sum(s)
​
#定义三重积分函数
def gl_quad3d(fun, n, x_lim=None, y_lim=None, z_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
    if z_lim is None:
        e, f = -1, 1
    else:
        e, f = z_lim[0], z_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * (f - e) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 8. * (b - a) * (d - c) * (f - e) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                                         (d - c) * v2 / 2. + (c + d) / 2.,
                                                         (f - e) * v3 / 2. + (e + f) / 2.), *args) * w[i] * w[j] * w[k]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc)
             for k, v3 in enumerate(loc))
        return sum(s)
​
​
def fun1(x):
    return 1./(1+x**2)
def fun2(x):
    return (1+x[0]**2+x[1])**0.5
def fun3(x, a, b):
    return a * x[0] * x[1] * np.e ** (b * x[2])
​
​
if __name__ == "__main__":
    res1=gl_quad1d(fun1,5)
    res2=gl_quad2d(fun2, 3)
    res3=gl_quad3d(fun3, 3, x_lim=[0,1], y_lim=[-1,0], args=(1,1))
    print(res1)
    print(res2)
    print(res3)
​

1.5711711711711713

4.443748541600919

-0.5875842321700031

相关推荐
小oo呆1 小时前
【学习心得】Jupyter 如何在conda的base环境中其他虚拟环境内核
python·jupyter·conda
天上路人2 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
好吃的肘子2 小时前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
小白学大数据2 小时前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
浊酒南街2 小时前
TensorFlow之微分求导
人工智能·python·tensorflow
立秋67892 小时前
用Python绘制梦幻星空
开发语言·python·pygame
汉克老师2 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
alpszero2 小时前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11
sz66cm2 小时前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法
緈福的街口2 小时前
【leetcode】94. 二叉树的中序遍历
算法·leetcode