python实现数值积分

目录

1、求解问题

2、求解原理

3、python实现


1、求解问题

2、求解原理

高斯-勒让德数值积分是一种有效的数值积分方法,它结合了高斯点和勒让德函数来计算一维函数的积分。

高斯-勒让德求积公式在给定的积分区间[a, b]上,通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。这些高斯点和权重系数是通过将给定的函数展开为勒让德多项式,并使用特定的求积公式来得到的。

高斯-勒让德求积公式具有很高的精度,特别是对于一些难以使用其他方法积分的函数。它的优点在于,与其他的数值积分方法相比,它通常能够提供更精确的结果,而且对于某些函数,它的计算速度也非常快。

高斯-勒让德数值积分的原理基于高斯积分和勒让德多项式。高斯积分是一种精度很高的插值型数值积分方法,它通过选择一些特定的点(称为高斯点),并使用与这些点相关的权重系数,来计算积分的近似值。勒让德多项式是一类定义在区间[-1, 1]上的多项式,它们可以被展开为无穷级数,也可以被用来近似计算一些函数的积分。

通过将给定的函数展开为勒让德多项式,并使用特定的求积公式,可以将高斯点和权重系数计算出来,从而得到积分的近似值。这种方法适用于各种不同类型的函数,包括多变量函数、三角函数、指数函数等等。

3、python实现

python 复制代码
from __future__ import division
import numpy as np
#定义一重积分函数
def gl_quad1d(fun, n, x_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if not callable(fun):
        return (b - a) * fun
​
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 2. * (b - a) * fun((b - a) * v / 2. + (a + b) / 2., *args) * w[i]
             for i, v in enumerate(loc))
        return sum(s)
​
#定义二重积分函数
def gl_quad2d(fun, n, x_lim=None, y_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 4. * (b - a) * (d - c) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                               (d - c) * v2 / 2. + (c + d) / 2.), *args) * w[i] * w[j]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc))
        return sum(s)
​
#定义三重积分函数
def gl_quad3d(fun, n, x_lim=None, y_lim=None, z_lim=None, args=()):
    if x_lim is None:
        a, b = -1, 1
    else:
        a, b = x_lim[0], x_lim[1]
​
    if y_lim is None:
        c, d = -1, 1
    else:
        c, d = y_lim[0], y_lim[1]
    if z_lim is None:
        e, f = -1, 1
    else:
        e, f = z_lim[0], z_lim[1]
​
    if not callable(fun):
        return (b - a) * (d - c) * (f - e) * fun
    else:
        loc, w = np.polynomial.legendre.leggauss(n)
        s = (1 / 8. * (b - a) * (d - c) * (f - e) * fun(((b - a) * v1 / 2. + (a + b) / 2.,
                                                         (d - c) * v2 / 2. + (c + d) / 2.,
                                                         (f - e) * v3 / 2. + (e + f) / 2.), *args) * w[i] * w[j] * w[k]
             for i, v1 in enumerate(loc)
             for j, v2 in enumerate(loc)
             for k, v3 in enumerate(loc))
        return sum(s)
​
​
def fun1(x):
    return 1./(1+x**2)
def fun2(x):
    return (1+x[0]**2+x[1])**0.5
def fun3(x, a, b):
    return a * x[0] * x[1] * np.e ** (b * x[2])
​
​
if __name__ == "__main__":
    res1=gl_quad1d(fun1,5)
    res2=gl_quad2d(fun2, 3)
    res3=gl_quad3d(fun3, 3, x_lim=[0,1], y_lim=[-1,0], args=(1,1))
    print(res1)
    print(res2)
    print(res3)
​

1.5711711711711713

4.443748541600919

-0.5875842321700031

相关推荐
MicroTech20254 分钟前
量子仿真新基石:MLGO微算法科技专用地址生成器驱动量子算法仿真革命
科技·算法·量子计算
WBluuue7 分钟前
数据机构与算法:dp优化——倍增优化
c++·算法·leetcode·动态规划
叫我辉哥e18 分钟前
新手进阶Python:办公看板升级交互式可视化+移动端适配+多终端同步
开发语言·python
m0_561359679 分钟前
Python面向对象编程(OOP)终极指南
jvm·数据库·python
zhangfeng11339 分钟前
deepseek部署和训练的PyTorch CUDA Transformers Accelerate PEFT稳定版本呢推荐
人工智能·pytorch·python
Bruk.Liu11 分钟前
(LangChain实战5):LangChain消息模版ChatPromptTemplate
人工智能·python·langchain·agent
Wiktok12 分钟前
SQLAlchemy+PyMySQL的实用实战示例
python·mysql·sqlalchemy
yufuu9814 分钟前
用Python批量处理Excel和CSV文件
jvm·数据库·python
深蓝电商API17 分钟前
异步爬虫结合 MongoDB 异步驱动 pymongo:高效数据爬取与存储实践
爬虫·python·mongodb
一个网络学徒17 分钟前
python练习3
开发语言·python