Re54:读论文 How Context Affects Language Models‘ Factual Predictions

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:How Context Affects Language Models' Factual Predictions

ArXiv网址:https://arxiv.org/abs/2005.04611

2020年AKBC论文,作者来自脸书和UCL。

本文主要关注zero-shot cloze-style question answering任务,使用LM+无监督检索,考察需要检索出什么样的上下文。

用DrQA检索器(TF-IDF检索维基百科)检索的结果,LM在QA上的指标就能和无监督场景相媲美。

open-domain QA的传统做法是retriever+reader(生成回答)

文章目录

  • [1. 数据集](#1. 数据集)
  • [2. LM](#2. LM)
  • [3. baseline](#3. baseline)
  • [4. 上下文设置](#4. 上下文设置)
  • [5. 主实验结果](#5. 主实验结果)

1. 数据集

2. LM

BERT

RoBERTa(削减了LAMA数据集以使其全部在RoBERTa的词表中)

3. baseline

DrQA:TF-IDF检索维基百科→抽取答案

将完形填空格式问题改成QA对:"X was born in [Mask]" to "Where was X born?"

4. 上下文设置

在BERT中用不同的segment embeddings区分问题(0)和上下文(1),中间再加个[SEP]

RoBERTa用EOS

后面的实验证明这个操作能提升效果。这可能是因为利用了BERT的NSP任务。

限长512

  1. oracle上下文:Wikipedia snippet

Wikipedia Snippet 是从 Wikipedia 页面上提取的一小段文本,通常用于快速展示相关条目的主要内容或概述。这种摘要可以帮助用户快速了解某个主题的核心信息,无需阅读整个条目。在搜索引擎结果中,Wikipedia Snippet 常常出现,以便用户在点击进入 Wikipedia 网站之前,就能获得关键信息。例如,如果你搜索一个历史人物、科学概念或者任何其他主题,搜索引擎可能会显示来自 Wikipedia 的简短摘要,这就是所谓的 "Snippet"。

  1. 相关上下文:检索或生成
  2. 对抗上下文:信息不足版(从同关系别的问题的oracle上下文中随机抽取)

5. 主实验结果

a:结果token经常不出现在检索上下文中

b:结果token是否出现在上下文中,如何影响模型预测结果。确实影响

每种上下文相比无上下文的改变量,是否加separation的效果对比:

证明NSP起作用:

不同方案在不同数据集上的NSP率

LM概率的变化与NSP概率的关系

↑这个图的纵坐标差别这么大还画成这样,感觉不好。虽然我知道是为了表现趋势相似,但是纵坐标完全不在一个量级上啊!

案例分析:

相关推荐
飞哥数智坊6 小时前
AI编程实战:Cursor+Claude4助力15分钟完成大屏开发
人工智能·claude·cursor
Kier9 小时前
基于YOLO实现一个智能条码识别
人工智能·python·ai编程
我是王大你是谁9 小时前
SmolVLA:一种用于经济实惠和高效的机器人视觉-语言-动作模型
人工智能·llm
MarkGosling9 小时前
【语音合成】B 站开源 IndexTTS :声音克隆,吊打真人发音,断句精准度 98%
人工智能·python
数据智能老司机9 小时前
AI产品开发的艺术——搜索与检索增强生成
人工智能·产品经理·产品
机器之心10 小时前
逐个token太慢!大模型原生并行出token,CMU、英伟达新作Multiverse
人工智能·llm
AI大模型技术社11 小时前
⚙️企业级Transformer优化:混合精度×梯度裁剪×权重初始化最佳实践
人工智能·llm
机器之心11 小时前
首个转型AI公司的新势力,在全球AI顶会展示下一代自动驾驶模型
人工智能
机器之心11 小时前
同一天开源新模型,一推理一编程,MiniMax和月之暗面开卷了
人工智能
腾讯云开发者11 小时前
腾讯云TVP走进青岛啤酒,解码数字化驱动智慧零售增长引擎
人工智能