c
复制代码
# 这是一个示例 Python 脚本。
import cv2
import numpy as np
def track_object():
# 打开摄像头外接
cap = cv2.VideoCapture(0)
while True:
# 读取摄像头帧
# ret(Return Value)是一个布尔值,表示是否成功读取了一帧图像。如果成功读取,ret为True;否则,为False。
# frame是读取到的图像帧。
ret, frame = cap.read()
# 将图像转换为HSV颜色空间。cv2.COLOR_BGR2HSV参数表示将BGR格式转换为HSV格式。
#BGR(蓝绿红)格式的图像帧转换为HSV(色相、饱和度、明度)格式。HSV颜色空间更适合进行颜色相关的图像处理。
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 定义追踪的颜色范围(此处以蓝色物体为例,可根据需要进行微调)
#第一个参数:色相(Hue):可以尝试在0到179之间选择一个适当的范围。。
#第二个参数:饱和度(Saturation):通常在较高的范围,例如1到255之间。
#第三个参数:明度(Value):根据具体场景,可以在较高的范围,例如0到255之间。
lower_color = np.array([90, 50, 50])
upper_color = np.array([130, 255, 255])
# 根据颜色范围创建掩膜。
#用于过滤出在指定颜色范围内的部分。这个掩码可以用于后续的图像处理,例如颜色分割或物体识别。
mask = cv2.inRange(hsv, lower_color, upper_color)
#开运算(Opening):先进行腐蚀,然后进行膨胀。它有助于去除小的噪点和分离相邻的物体。
#闭运算(Closing):先进行膨胀,然后进行腐蚀。它有助于填充物体中的小孔,连接相邻的物体。
mask = cv2.erode(mask, None, iterations=2) # 对掩膜进行腐蚀处理,以去除噪声 。iterations为次数
mask = cv2.dilate(mask, None, iterations=2) #膨胀处理
# 寻找物体的轮廓
#cv2.findContours函数来找到二值图像中的轮廓。
#参数:
#参数1:输 入的二值图像。通常是经过阈值处理后的图像,例如在颜色过滤之后生成的掩码。
#参数2(cv2.RETR_EXTERNAL):轮廓的检索模式。有几种模式可选,常用的包括:
# cv2.RETR_EXTERNAL:只检测最外层的轮廓。
# cv2.RETR_LIST:检测所有的轮廓并保存到列表中。
# cv2.RETR_CCOMP:检测所有轮廓并将其组织为两层的层次结构。
# cv2.RETR_TREE:检测所有轮廓并重构整个轮廓层次结构。
# 参数3(cv2.CHAIN_APPROX_SIMPLE):轮廓的近似方法。有两种方法可选,常用的有:
# cv2.CHAIN_APPROX_SIMPLE:压缩水平、垂直和对角线方向上的所有轮廓,只保留端点。
# cv2.CHAIN_APPROX_NONE:保留所有的轮廓点。
#返回值: contours:包含检测到的轮廓的列表。每个轮廓由一系列点组成。
# _(下划线):层次信息,通常在后续处理中可能会用到。在这里,我们通常用下划线表示我们不关心这个返回值。
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 初始化物体中心,center是一个包含两个整数的元组,表示轮廓的质心坐标
center = None
if len(contours) > 0: #说明检测到轮廓
# 找到面积最大的轮廓的点集,从轮廓列表中,计算出面积最大的轮廓的点集。contourArea是计算轮廓面积的函数。
#max的第一个参数:可以为一个列表。第二个参数:固定为 key=功能函数。
#作用:从列表中遍历成员实现功能函数。
max_contour = max(contours, key=cv2.contourArea)
# 计算物体的最小外接圆,参数为:轮廓的点集
#(x, y):外接圆的圆心坐标。
#radius:外接圆的半径。
((x, y), radius) = cv2.minEnclosingCircle(max_contour)
# 计算物体的中心坐标
#M为字典,里面存着 二值图像矩阵信息
M = cv2.moments(max_contour)
#m00 = moments['m00'] # 面积
#cx = moments['m10'] / moments['m00'] # 质心的x坐标
#cy = moments['m01'] / moments['m00'] # 质心的y坐标
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# 只有当物体半径大于一定值时才显示追踪结果
if radius > 10: #外接圆半径大于10
# 在图像上绘制物体的圆形轮廓和中心
# 这一行代码绘制一个以 (x, y) 为圆心,半径为 radius 的圆。颜色为 (0, 255, 255) 表示BGR格式中的黄色,线宽度为2。
cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)
#这一行代码绘制一个半径为5的实心圆作为中心点,以 center 为中心。颜色为 (0, 0, 255) 表示BGR格式中的红色。。
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# 显示实时追踪结果
#这行代码使用OpenCV的cv2.imshow函数来显示帧,窗口标题为 "Object Tracking"。
cv2.imshow("Object Tracking", frame)
# 按下Esc键退出追踪
if cv2.waitKey(1) == 27:
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
# 运行物体追踪程序
track_ob