leetcode - 2050. Parallel Courses III

Description

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

You may start taking a course at any time if the prerequisites are met.

Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

复制代码
Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

复制代码
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

Constraints:

复制代码
1 <= n <= 5 * 10^4
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 10^4)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
All the pairs [prevCoursej, nextCoursej] are unique.
time.length == n
1 <= time[i] <= 10^4
The given graph is a directed acyclic graph.

Solution

Topological sort + bfs, keep track of all the parent nodes and children nodes, use a queue to visit all the nodes, make sure the time in queue is the largest time we have at that time.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( 1 ) o(1) o(1)

Code

python3 复制代码
class Solution:
    def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
        def build_graph(n: int, edges: list):
            graph = {i: {'p': [], 'c': []} for i in range(n)}
            indegree = {i: 0 for i in range(n)}
            for start, end in edges:
                graph[end - 1]['p'].append(start - 1)
                graph[start - 1]['c'].append(end - 1)
                indegree[end - 1] += 1
            return graph, indegree
        
        graph, indegree = build_graph(n, relations)
        time_memo = {i: 0 for i in range(n)}
        queue = collections.deque([])
        for i in range(n):
            if indegree[i] == 0:
                queue.append((i, 0))
        while queue:
            node, finish_time = queue.popleft()
            if time_memo[node] > finish_time + time[node]:
                continue
            time_memo[node] = finish_time + time[node]
            for next_node in graph[node]['c']:
                indegree[next_node] -= 1
                if indegree[next_node] == 0:
                    parent_time = 0
                    for each_parent in graph[next_node]['p']:
                        parent_time = max(parent_time, time_memo[each_parent])
                    queue.append((next_node, parent_time))
        return max(time_memo.values())
相关推荐
@老蝴20 分钟前
C语言 — 通讯录模拟实现
c语言·开发语言·算法
L-ololois1 小时前
【AI】模型vs算法(以自动驾驶为例)
人工智能·算法·自动驾驶
安全系统学习2 小时前
网络安全之RCE简单分析
开发语言·python·算法·安全·web安全
TGB-Earnest4 小时前
【leetcode-合并两个有序链表】
javascript·leetcode·链表
GEEK零零七4 小时前
Leetcode 3299. 连续子序列的和
算法·leetcode·动态规划
飞飞是甜咖啡4 小时前
【机器学习】Teacher-Student框架
人工智能·算法·机器学习
蒟蒻小袁4 小时前
力扣面试150题--单词接龙
算法·leetcode·面试
ghie90905 小时前
LMD分解通过局部均值分解重构信号实现对信号的降噪
算法·均值算法·重构
零叹6 小时前
篇章十 数据结构——排序
java·数据结构·算法·排序算法
涛哥码咖6 小时前
前端十种排序算法解析
前端·算法·排序算法