leetcode - 2050. Parallel Courses III

Description

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

You may start taking a course at any time if the prerequisites are met.

Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

复制代码
Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

复制代码
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

Constraints:

复制代码
1 <= n <= 5 * 10^4
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 10^4)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
All the pairs [prevCoursej, nextCoursej] are unique.
time.length == n
1 <= time[i] <= 10^4
The given graph is a directed acyclic graph.

Solution

Topological sort + bfs, keep track of all the parent nodes and children nodes, use a queue to visit all the nodes, make sure the time in queue is the largest time we have at that time.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( 1 ) o(1) o(1)

Code

python3 复制代码
class Solution:
    def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
        def build_graph(n: int, edges: list):
            graph = {i: {'p': [], 'c': []} for i in range(n)}
            indegree = {i: 0 for i in range(n)}
            for start, end in edges:
                graph[end - 1]['p'].append(start - 1)
                graph[start - 1]['c'].append(end - 1)
                indegree[end - 1] += 1
            return graph, indegree
        
        graph, indegree = build_graph(n, relations)
        time_memo = {i: 0 for i in range(n)}
        queue = collections.deque([])
        for i in range(n):
            if indegree[i] == 0:
                queue.append((i, 0))
        while queue:
            node, finish_time = queue.popleft()
            if time_memo[node] > finish_time + time[node]:
                continue
            time_memo[node] = finish_time + time[node]
            for next_node in graph[node]['c']:
                indegree[next_node] -= 1
                if indegree[next_node] == 0:
                    parent_time = 0
                    for each_parent in graph[next_node]['p']:
                        parent_time = max(parent_time, time_memo[each_parent])
                    queue.append((next_node, parent_time))
        return max(time_memo.values())
相关推荐
想跑步的小弱鸡3 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL4 小时前
ZGC初步了解
java·jvm·算法
爱的叹息5 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰5 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空6 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!7 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca7 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL7 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
weisian1517 小时前
Java常用工具算法-3--加密算法2--非对称加密算法(RSA常用,ECC,DSA)
java·开发语言·算法
程序员黄同学9 小时前
贪心算法,其优缺点是什么?
算法·贪心算法