leetcode - 2050. Parallel Courses III

Description

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

You may start taking a course at any time if the prerequisites are met.

Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

复制代码
Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

复制代码
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

Constraints:

复制代码
1 <= n <= 5 * 10^4
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 10^4)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
All the pairs [prevCoursej, nextCoursej] are unique.
time.length == n
1 <= time[i] <= 10^4
The given graph is a directed acyclic graph.

Solution

Topological sort + bfs, keep track of all the parent nodes and children nodes, use a queue to visit all the nodes, make sure the time in queue is the largest time we have at that time.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( 1 ) o(1) o(1)

Code

python3 复制代码
class Solution:
    def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
        def build_graph(n: int, edges: list):
            graph = {i: {'p': [], 'c': []} for i in range(n)}
            indegree = {i: 0 for i in range(n)}
            for start, end in edges:
                graph[end - 1]['p'].append(start - 1)
                graph[start - 1]['c'].append(end - 1)
                indegree[end - 1] += 1
            return graph, indegree
        
        graph, indegree = build_graph(n, relations)
        time_memo = {i: 0 for i in range(n)}
        queue = collections.deque([])
        for i in range(n):
            if indegree[i] == 0:
                queue.append((i, 0))
        while queue:
            node, finish_time = queue.popleft()
            if time_memo[node] > finish_time + time[node]:
                continue
            time_memo[node] = finish_time + time[node]
            for next_node in graph[node]['c']:
                indegree[next_node] -= 1
                if indegree[next_node] == 0:
                    parent_time = 0
                    for each_parent in graph[next_node]['p']:
                        parent_time = max(parent_time, time_memo[each_parent])
                    queue.append((next_node, parent_time))
        return max(time_memo.values())
相关推荐
橘颂TA几秒前
【剑斩OFFER】算法的暴力美学——二分查找
算法·leetcode·面试·职场和发展·c/c++
lkbhua莱克瓦2421 分钟前
Java基础——常用算法4
java·数据结构·笔记·算法·github·排序算法·快速排序
m0_7482480233 分钟前
揭开 C++ vector 底层面纱:从三指针模型到手写完整实现
开发语言·c++·算法
七夜zippoe43 分钟前
Ascend C流与任务管理实战:构建高效的异步计算管道
服务器·网络·算法
Greedy Alg1 小时前
LeetCode 208. 实现 Trie (前缀树)
算法
还是码字踏实1 小时前
基础数据结构之哈希表:两数之和(LeetCode 1 简单题)
数据结构·leetcode·散列表
Kt&Rs1 小时前
11.5 LeetCode 题目汇总与解题思路
数据结构·算法·leetcode
还是码字踏实1 小时前
基础数据结构之数组的前缀和技巧:和为K的子数组(LeetCode 560 中等题)
算法·leetcode·前缀和·哈希字典
沙威玛_LHE5 小时前
树和二叉树
数据结构·算法
py有趣6 小时前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode