leetcode - 2050. Parallel Courses III

Description

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

You may start taking a course at any time if the prerequisites are met.

Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

复制代码
Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

复制代码
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

Constraints:

复制代码
1 <= n <= 5 * 10^4
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 10^4)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
All the pairs [prevCoursej, nextCoursej] are unique.
time.length == n
1 <= time[i] <= 10^4
The given graph is a directed acyclic graph.

Solution

Topological sort + bfs, keep track of all the parent nodes and children nodes, use a queue to visit all the nodes, make sure the time in queue is the largest time we have at that time.

Time complexity: o ( n ) o(n) o(n)

Space complexity: o ( 1 ) o(1) o(1)

Code

python3 复制代码
class Solution:
    def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
        def build_graph(n: int, edges: list):
            graph = {i: {'p': [], 'c': []} for i in range(n)}
            indegree = {i: 0 for i in range(n)}
            for start, end in edges:
                graph[end - 1]['p'].append(start - 1)
                graph[start - 1]['c'].append(end - 1)
                indegree[end - 1] += 1
            return graph, indegree
        
        graph, indegree = build_graph(n, relations)
        time_memo = {i: 0 for i in range(n)}
        queue = collections.deque([])
        for i in range(n):
            if indegree[i] == 0:
                queue.append((i, 0))
        while queue:
            node, finish_time = queue.popleft()
            if time_memo[node] > finish_time + time[node]:
                continue
            time_memo[node] = finish_time + time[node]
            for next_node in graph[node]['c']:
                indegree[next_node] -= 1
                if indegree[next_node] == 0:
                    parent_time = 0
                    for each_parent in graph[next_node]['p']:
                        parent_time = max(parent_time, time_memo[each_parent])
                    queue.append((next_node, parent_time))
        return max(time_memo.values())
相关推荐
yaoh.wang2 小时前
力扣(LeetCode) 13: 罗马数字转整数 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
T1ssy3 小时前
布隆过滤器:用概率换空间的奇妙数据结构
算法·哈希算法
hetao17338373 小时前
2025-12-12~14 hetao1733837的刷题笔记
数据结构·c++·笔记·算法
鲨莎分不晴4 小时前
强化学习第五课 —— A2C & A3C:并行化是如何杀死经验回放
网络·算法·机器学习
搞科研的小刘选手5 小时前
【ISSN/ISBN双刊号】第三届电力电子与人工智能国际学术会议(PEAI 2026)
图像处理·人工智能·算法·电力电子·学术会议
拉姆哥的小屋5 小时前
从混沌到秩序:条件扩散模型在图像转换中的哲学与技术革命
人工智能·算法·机器学习
Sammyyyyy5 小时前
DeepSeek v3.2 正式发布,对标 GPT-5
开发语言·人工智能·gpt·算法·servbay
sin_hielo6 小时前
leetcode 2110
数据结构·算法·leetcode
Jay20021116 小时前
【机器学习】33 强化学习 - 连续状态空间(DQN算法)
人工智能·算法·机器学习
铭哥的编程日记6 小时前
后端面试通关笔记:从真题到思路(五)
面试·职场和发展