Elasticsearch分词器--空格分词器(whitespace analyzer)

介绍

文本分析,是将全文本转换为一系列单词的过程,也叫分词。analysis是通过analyzer(分词器)来实现的,可以使用Elasticearch内置的分词器,也可以自己去定制一些分词器。除了在数据写入时将词条进行转换,那么在查询的时候也需要使用相同的分析器对语句进行分析。

|---------------------|--------------------------|
| 分词器名称 | 处理过程 |
| Standard Analyzer | 默认的分词器,按词切分,小写处理 |
| Simple Analyzer | 按照非字母切分(符号被过滤),小写处理 |
| Stop Analyzer | 小写处理,停用词过滤(the, a, this) |
| Whitespace Analyzer | 按照空格切分,不转小写 |
| Keyword Analyzer | 不分词,直接将输入当做输出 |
| Pattern Analyzer | 正则表达式,默认是\W+(非字符串分隔) |

实战

1、空格分词器展示

POST:http://localhost:9200/_analyze/

复制代码
{
  "analyzer": "whitespace",
  "text": "hello this my white space analyzer"
}

结果:按照空格进行分词处理

复制代码
{
    "tokens":[
        {
            "token":"hello",
            "start_offset":0,
            "end_offset":5,
            "type":"word",
            "position":0
        },
        {
            "token":"this",
            "start_offset":6,
            "end_offset":10,
            "type":"word",
            "position":1
        },
        {
            "token":"my",
            "start_offset":11,
            "end_offset":13,
            "type":"word",
            "position":2
        },
        {
            "token":"white",
            "start_offset":14,
            "end_offset":19,
            "type":"word",
            "position":3
        },
        {
            "token":"space",
            "start_offset":20,
            "end_offset":25,
            "type":"word",
            "position":4
        },
        {
            "token":"analyzer",
            "start_offset":26,
            "end_offset":34,
            "type":"word",
            "position":5
        }
    ]
}

2、空格分词器创建与查询

目前我们有一些应用场景需要根据空格分词之后的内容进行精准查询,这样空格分词器就满足我们的需求了。

(1)创建索引,针对想要分词的字段指定空格分词器

whitespace_analyzer_1:指定为whitespace

content:指定为空格分词器

复制代码
{
  "settings": {
    "analysis": {
      "analyzer": {
        "whitespace_analyzer_1": {
          "type": "whitespace"
        }
      }
    }
  },
  "mappings": {
    "_doc": {
      "properties": {
        "id": {
          "type": "keyword"
        },
        "title": {
          "type": "text"
        },
        "content": {
          "type": "text",
          "analyzer": "whitespace_analyzer_1"
        }
      }
    }
  }
}

(2)索引查询

保存一条数据:

复制代码
{
  "id": "002",
  "title": "科目2",
  "content": "this is whitespace"
}

根据分词查询:

复制代码
{
  "query": {
    "match": {
      "desc": "this"
    }
  }
}

根据不存在的分词查询则查询不到

复制代码
{
  "query": {
    "match": {
      "desc": "that"
    }
  }
}
相关推荐
Elastic 中国社区官方博客1 天前
用 Elasticsearch 构建一个 ChatGPT connector 来查询 GitHub issues
大数据·人工智能·elasticsearch·搜索引擎·chatgpt·github·全文检索
武子康1 天前
大数据-172 Elasticsearch 索引操作与 IK 分词器落地实战:7.3/8.15 全流程速查
大数据·后端·elasticsearch
Elasticsearch1 天前
Elastic 与 Accenture 在 GenAI 数据准备方面的合作
elasticsearch
Elastic 中国社区官方博客1 天前
Elasticsearch:在隔离环境中安装 ELSER 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Dxy12393102161 天前
Elasticsearch删除数据介绍
大数据·elasticsearch·搜索引擎
泻水置平地1 天前
Docker下安装ES和kibana详细教程
elasticsearch·docker·容器
Wang's Blog1 天前
Elastic Stack梳理:深度解析Elasticsearch分布式查询机制与相关性算分优化实践
分布式·elasticsearch
yumgpkpm1 天前
腾讯TBDS和CMP(Cloud Data AI Platform,类Cloudera CDP,如华为鲲鹏 ARM 版)比较的缺陷在哪里?
hive·hadoop·elasticsearch·zookeeper·oracle·kafka·hbase
Elasticsearch1 天前
Elasticsearch:专用向量数据库很快就会被遗忘,事实上它从未流行过
elasticsearch
Elasticsearch1 天前
ES|QL 在 9.2:智能查找连接和时间序列支持
elasticsearch