Elasticsearch分词器--空格分词器(whitespace analyzer)

介绍

文本分析,是将全文本转换为一系列单词的过程,也叫分词。analysis是通过analyzer(分词器)来实现的,可以使用Elasticearch内置的分词器,也可以自己去定制一些分词器。除了在数据写入时将词条进行转换,那么在查询的时候也需要使用相同的分析器对语句进行分析。

|---------------------|--------------------------|
| 分词器名称 | 处理过程 |
| Standard Analyzer | 默认的分词器,按词切分,小写处理 |
| Simple Analyzer | 按照非字母切分(符号被过滤),小写处理 |
| Stop Analyzer | 小写处理,停用词过滤(the, a, this) |
| Whitespace Analyzer | 按照空格切分,不转小写 |
| Keyword Analyzer | 不分词,直接将输入当做输出 |
| Pattern Analyzer | 正则表达式,默认是\W+(非字符串分隔) |

实战

1、空格分词器展示

POST:http://localhost:9200/_analyze/

复制代码
{
  "analyzer": "whitespace",
  "text": "hello this my white space analyzer"
}

结果:按照空格进行分词处理

复制代码
{
    "tokens":[
        {
            "token":"hello",
            "start_offset":0,
            "end_offset":5,
            "type":"word",
            "position":0
        },
        {
            "token":"this",
            "start_offset":6,
            "end_offset":10,
            "type":"word",
            "position":1
        },
        {
            "token":"my",
            "start_offset":11,
            "end_offset":13,
            "type":"word",
            "position":2
        },
        {
            "token":"white",
            "start_offset":14,
            "end_offset":19,
            "type":"word",
            "position":3
        },
        {
            "token":"space",
            "start_offset":20,
            "end_offset":25,
            "type":"word",
            "position":4
        },
        {
            "token":"analyzer",
            "start_offset":26,
            "end_offset":34,
            "type":"word",
            "position":5
        }
    ]
}

2、空格分词器创建与查询

目前我们有一些应用场景需要根据空格分词之后的内容进行精准查询,这样空格分词器就满足我们的需求了。

(1)创建索引,针对想要分词的字段指定空格分词器

whitespace_analyzer_1:指定为whitespace

content:指定为空格分词器

复制代码
{
  "settings": {
    "analysis": {
      "analyzer": {
        "whitespace_analyzer_1": {
          "type": "whitespace"
        }
      }
    }
  },
  "mappings": {
    "_doc": {
      "properties": {
        "id": {
          "type": "keyword"
        },
        "title": {
          "type": "text"
        },
        "content": {
          "type": "text",
          "analyzer": "whitespace_analyzer_1"
        }
      }
    }
  }
}

(2)索引查询

保存一条数据:

复制代码
{
  "id": "002",
  "title": "科目2",
  "content": "this is whitespace"
}

根据分词查询:

复制代码
{
  "query": {
    "match": {
      "desc": "this"
    }
  }
}

根据不存在的分词查询则查询不到

复制代码
{
  "query": {
    "match": {
      "desc": "that"
    }
  }
}
相关推荐
大只鹅2 小时前
解决 Spring Boot 对 Elasticsearch 字段没有小驼峰映射的问题
spring boot·后端·elasticsearch
HGW68911 小时前
基于 Elasticsearch 实现地图点聚合
java·elasticsearch·高德地图
小袁拒绝摆烂16 小时前
ElasticSearch快速入门-1
大数据·elasticsearch·搜索引擎
GISer_Jing1 天前
Git协作开发:feature分支、拉取最新并合并
大数据·git·elasticsearch
高山莫衣1 天前
git rebase多次触发冲突
大数据·git·elasticsearch
kobe_OKOK_1 天前
【团队开发】git 操作流程
git·elasticsearch·团队开发
阿里云大数据AI技术1 天前
AI搜索 MCP最佳实践
数据库·人工智能·搜索引擎
大只鹅2 天前
Springboot3.3.4使用spring-data-elasticsearch整合Elasticsearch7.12.1
spring boot·elasticsearch
二闹2 天前
SLF4J/Logback 配置与 ELK 集成实战指南
后端·elasticsearch·logstash
G皮T2 天前
【Elasticsearch】全文检索 & 组合检索
大数据·elasticsearch·搜索引擎·全文检索·match·query·组合检索