最近数据分析面试的一点感悟...

我是阿粥,也是小z

最近面了不少应届的同学(数据分析岗位),颇有感触,与各位分享。

简历可以润色,但要适度

运用一些原则,如STAR法则,让简历逻辑更清晰,条块分明,突出自己在经历和项目中的努力,并用结果量化,这很棒。

但我也看到有同学,注水要素太明显。

例如在描述自己短暂的实习经历时,强调基于自己的数据分析输出建议,最终影响集团业务决策,提升某关键指标50%+。

从概率上讲这是可能的,但从现实来讲又是不现实的。

输出建议到落地,还有很长的路要走,落地到显著有效,有更长的路要走。

简历润色,不要脱离实事求是的内核。

承认自己不了解,没什么大不了的

不同行业,不同公司,甚至同一家公司的不同部门,对数据分析岗位的定义和侧重点都不太一样。

面试难免遇到一些超出自己认知的问题。

我所在的是电商行业,在问行业基础问题之前,会先问面试者"对电商行业有多少了解"。

遇到说不太了解的同学,我会换他熟悉的行业或场景来问。遇到自认为非常了解的同学,那就会有更深入的灵魂问题。

怕的是自诩精通,但一问三不知。

这个阶段,数据技能非常重要

基础数据分析岗位,必然会涉及到大量的取数工作。

职场不是学校,在同等条件下,企业当然想招一个来了就能快速上手的人。

因此,常用数据工具的掌握程度非常重要。

Excel就不用多说了,它是底线。

SQL常用查询一定要了熟于心,做到指哪查哪。

Python学习不用面面俱到,Pandas库熟练运用就好。

至于Powerbi 、Tableau、SPSS、R等,属于锦上添花,在这个阶段如果不是课程有涉及到,或者心仪的岗位明确要求,不需要花额外的时间去恶补。

要有卷的心理准备

目前推到面试环节的简历,基本都是还不错的学历+两段以上中大厂相关实习经历。

为什么?

面对上百份简历,HR和面试官必须在有限时间内做出选择。如此筛选是无奈,也是相对最稳妥的一种方式。

在就业供需失衡的环境下,卷,是很难避免的。

如果已经找到了好的工作,我由衷祝贺。如果还没有找到合适的,也不要过于自我怀疑。

人生是一场马拉松,不要为了一城一地的得失而乱了方向。

以上。

相关推荐
发现一只大呆瓜4 分钟前
前端性能优化:图片懒加载的三种手写方案
前端·javascript·面试
发现一只大呆瓜2 小时前
AI流式交互:SSE与WebSocket技术选型
前端·javascript·面试
园小异2 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展
java1234_小锋4 小时前
Java高频面试题:BIO、NIO、AIO有什么区别?
java·面试·nio
Lee川4 小时前
🎬 从标签到屏幕:揭秘现代网页构建与适配之道
前端·面试
Epiphany.5565 小时前
蓝桥杯备赛题目-----爆破
算法·职场和发展·蓝桥杯
YuTaoShao5 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法三)DP 空间优化
算法·leetcode·职场和发展
UrbanJazzerati6 小时前
Python编程基础:类(class)和构造函数
后端·面试
Lun3866buzha8 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa9 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘