IBR-net 代码研读

1. TrainDataloader

从TrainDataset 里面读取 RGB 根据 图像生成 Ray

2. Feature Map 生成

假设原图的 shape (512,512,3), 选择原图相近的 10张图像,经过U-Net 类似的结构之后,生成的 特征Tensor 是(10,64,128,128)。 这个特征图 分成2个(10,32,128,128) 和 (10,32,128,128) 分别送入到 Coarse IBR-net 和 Fine IBR-Net 中去

3. 最重要的依据 Feature Map 去得到 color 和 density

3.1 根据 射线得到采样点,然后往关联的feature map 上面做投影,查询feature.

5000条射线采样64个点,shape (500,64,3), 然后这些世界系的采样点往 关联的 RGB 图像上进行投影,并查询相关的RGB 数值。

python 复制代码
## 世界系的3D点做投影
 pixel_locations, mask_in_front = self.compute_projections(xyz, train_cameras)
 normalized_pixel_locations = self.normalize(pixel_locations, h, w)   # [n_views, n_rays, n_samples, 2]

 # rgb sampling, 根据投影的坐标查询RGB
 rgbs_sampled = F.grid_sample(train_imgs, normalized_pixel_locations, align_corners=True)
 rgb_sampled = rgbs_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, 3]

## 根据 投影的在feature map 的坐标查询 对应的 Feature 
feat_sampled = F.grid_sample(featmaps, normalized_pixel_locations, align_corners=True)
feat_sampled = feat_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, d]

## 将查询得到的 RGB 和 feature Concat 起来
rgb_feat_sampled = torch.cat([rgb_sampled, feat_sampled], dim=-1)   # [n_rays, n_samples, n_views, d+3]

投影点会落在 图像边界外,因此有一个 Mask 来 记录提取的feature 的有效性。

3.2 计算空间采样点的 density 和 color

1. 将采样点对10张关联的 direction 进行MLP学习成35维度的feature

通过一个MLP,将每个世界点到 相关方向的 direction (500,64,10.3) 通过MLP 学成 (500,64,10,35) 维度的feature

相关推荐
华大哥6 分钟前
AI大模型基于LangChain 进行RAG与Agent智能体开发
人工智能·langchain
Sagittarius_A*8 分钟前
角点检测:Harris 与 Shi-Tomasi原理拆解【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
困死,根本不会9 分钟前
OpenCV实时摄像头处理:曝光调节、降噪与二值化实战
人工智能·opencv·计算机视觉
LitchiCheng14 分钟前
Mujoco 开源机械臂 RL 强化学习避障、绕障
人工智能·python·开源
A先生的AI之旅26 分钟前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits26 分钟前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
丝瓜蛋汤26 分钟前
微调生成特定写作风格助手
人工智能·python
OpenMiniServer41 分钟前
电气化能源革命下的社会
java·人工智能·能源
猿小羽1 小时前
探索 Codex:AI 编程助手的未来潜力
人工智能·openai·代码生成·codex·ai编程助手
菜青虫嘟嘟1 小时前
Expert Iteration:一种无需人工标注即可显著提升大语言模型推理能力的简单方法核心
人工智能·语言模型·自然语言处理