IBR-net 代码研读

1. TrainDataloader

从TrainDataset 里面读取 RGB 根据 图像生成 Ray

2. Feature Map 生成

假设原图的 shape (512,512,3), 选择原图相近的 10张图像,经过U-Net 类似的结构之后,生成的 特征Tensor 是(10,64,128,128)。 这个特征图 分成2个(10,32,128,128) 和 (10,32,128,128) 分别送入到 Coarse IBR-net 和 Fine IBR-Net 中去

3. 最重要的依据 Feature Map 去得到 color 和 density

3.1 根据 射线得到采样点,然后往关联的feature map 上面做投影,查询feature.

5000条射线采样64个点,shape (500,64,3), 然后这些世界系的采样点往 关联的 RGB 图像上进行投影,并查询相关的RGB 数值。

python 复制代码
## 世界系的3D点做投影
 pixel_locations, mask_in_front = self.compute_projections(xyz, train_cameras)
 normalized_pixel_locations = self.normalize(pixel_locations, h, w)   # [n_views, n_rays, n_samples, 2]

 # rgb sampling, 根据投影的坐标查询RGB
 rgbs_sampled = F.grid_sample(train_imgs, normalized_pixel_locations, align_corners=True)
 rgb_sampled = rgbs_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, 3]

## 根据 投影的在feature map 的坐标查询 对应的 Feature 
feat_sampled = F.grid_sample(featmaps, normalized_pixel_locations, align_corners=True)
feat_sampled = feat_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, d]

## 将查询得到的 RGB 和 feature Concat 起来
rgb_feat_sampled = torch.cat([rgb_sampled, feat_sampled], dim=-1)   # [n_rays, n_samples, n_views, d+3]

投影点会落在 图像边界外,因此有一个 Mask 来 记录提取的feature 的有效性。

3.2 计算空间采样点的 density 和 color

1. 将采样点对10张关联的 direction 进行MLP学习成35维度的feature

通过一个MLP,将每个世界点到 相关方向的 direction (500,64,10.3) 通过MLP 学成 (500,64,10,35) 维度的feature

相关推荐
王哥儿聊AI4 分钟前
基于LLM合成高质量情感数据,提升情感分类能力!!
人工智能·分类·数据挖掘
t198751289 分钟前
基于MATLAB-GUI图形界面的数字图像处理
人工智能·计算机视觉·matlab
悟空聊架构10 分钟前
10 分钟打造一款超级马里奥小游戏,重拾20 年前的乐趣
人工智能·codebuddy首席试玩官
观察者SK13 分钟前
当硅基存在成为人性延伸的注脚:论情感科技重构社会联结的可能性
人工智能·科技·重构
深情不及里子43 分钟前
AI Agent | Coze 插件使用指南:从功能解析到实操步骤
人工智能·coze·插件配置
2201_754918411 小时前
OpenCV 光流估计:从原理到实战
人工智能·opencv·计算机视觉
RockLiu@8051 小时前
自适应稀疏核卷积网络:一种高效灵活的图像处理方案
网络·图像处理·人工智能
落樱弥城2 小时前
角点特征:从传统算法到深度学习算法演进
人工智能·深度学习·算法
StarRocks_labs2 小时前
StarRocks MCP Server 开源发布:为 AI 应用提供强大分析中枢
数据库·starrocks·人工智能·开源·olap·mcp
珂朵莉MM2 小时前
2024 睿抗机器人开发者大赛CAIP-编程技能赛-专科组(国赛)解题报告 | 珂学家
开发语言·人工智能·算法·leetcode·职场和发展·深度优先·图论