IBR-net 代码研读

1. TrainDataloader

从TrainDataset 里面读取 RGB 根据 图像生成 Ray

2. Feature Map 生成

假设原图的 shape (512,512,3), 选择原图相近的 10张图像,经过U-Net 类似的结构之后,生成的 特征Tensor 是(10,64,128,128)。 这个特征图 分成2个(10,32,128,128) 和 (10,32,128,128) 分别送入到 Coarse IBR-net 和 Fine IBR-Net 中去

3. 最重要的依据 Feature Map 去得到 color 和 density

3.1 根据 射线得到采样点,然后往关联的feature map 上面做投影,查询feature.

5000条射线采样64个点,shape (500,64,3), 然后这些世界系的采样点往 关联的 RGB 图像上进行投影,并查询相关的RGB 数值。

python 复制代码
## 世界系的3D点做投影
 pixel_locations, mask_in_front = self.compute_projections(xyz, train_cameras)
 normalized_pixel_locations = self.normalize(pixel_locations, h, w)   # [n_views, n_rays, n_samples, 2]

 # rgb sampling, 根据投影的坐标查询RGB
 rgbs_sampled = F.grid_sample(train_imgs, normalized_pixel_locations, align_corners=True)
 rgb_sampled = rgbs_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, 3]

## 根据 投影的在feature map 的坐标查询 对应的 Feature 
feat_sampled = F.grid_sample(featmaps, normalized_pixel_locations, align_corners=True)
feat_sampled = feat_sampled.permute(2, 3, 0, 1)  # [n_rays, n_samples, n_views, d]

## 将查询得到的 RGB 和 feature Concat 起来
rgb_feat_sampled = torch.cat([rgb_sampled, feat_sampled], dim=-1)   # [n_rays, n_samples, n_views, d+3]

投影点会落在 图像边界外,因此有一个 Mask 来 记录提取的feature 的有效性。

3.2 计算空间采样点的 density 和 color

1. 将采样点对10张关联的 direction 进行MLP学习成35维度的feature

通过一个MLP,将每个世界点到 相关方向的 direction (500,64,10.3) 通过MLP 学成 (500,64,10,35) 维度的feature

相关推荐
埃菲尔铁塔_CV算法24 分钟前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】43 分钟前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_452600691 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
右恩1 小时前
AI大模型重塑软件开发:流程革新与未来展望
人工智能
图片转成excel表格2 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
ApiHug2 小时前
ApiSmart x Qwen2.5-Coder 开源旗舰编程模型媲美 GPT-4o, ApiSmart 实测!
人工智能·spring boot·spring·ai编程·apihug
哇咔咔哇咔3 小时前
【科普】简述CNN的各种模型
人工智能·神经网络·cnn
李歘歘3 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习