损失函数与反向传播

计算l1loss mseloss

复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss(reduction='sum')
result = loss(inputs,targets)

loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)

print(result)
print(result_mse)

交叉熵·

复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    print(result_loss)

反向传播grad对参数优化,梯度下降,对参数更新,达到降阶。

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    #print(result_loss)
    result_loss.backward()
    print("ok")
相关推荐
闲人编程20 小时前
消息通知系统实现:构建高可用、可扩展的企业级通知服务
java·服务器·网络·python·消息队列·异步处理·分发器
柠柠酱21 小时前
【深度学习Day4】告别暴力拉平!MATLAB老鸟带你拆解CNN核心:卷积与池化 (附高频面试考点)
深度学习
大神君Bob21 小时前
【AI办公自动化】如何使用Pytho让Excel表格处理自动化
python
Heorine21 小时前
数学建模 绘图 图表 可视化(6)
python·数学建模·数据可视化
栈与堆21 小时前
LeetCode-1-两数之和
java·数据结构·后端·python·算法·leetcode·rust
向量引擎小橙21 小时前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
rayufo21 小时前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类
智航GIS1 天前
10.7 pyspider 库入门
开发语言·前端·python
副露のmagic1 天前
更弱智的算法学习 day25
python·学习·算法
hudawei9961 天前
Flask 与 FastAPI 对比分析
python·flask·fastapi