损失函数与反向传播

计算l1loss mseloss

复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss(reduction='sum')
result = loss(inputs,targets)

loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)

print(result)
print(result_mse)

交叉熵·

复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    print(result_loss)

反向传播grad对参数优化,梯度下降,对参数更新,达到降阶。

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    #print(result_loss)
    result_loss.backward()
    print("ok")
相关推荐
EEG小佬7 分钟前
Jupyter选择内核时如何找到虚拟环境
ide·python·jupyter
文人sec21 分钟前
使用python-pandas-openpyxl编写运营查询小工具
开发语言·python·pandas
hu_yuchen33 分钟前
问卷系统自动化测试报告
软件测试·python
百锦再1 小时前
第8章 模块系统
android·java·开发语言·python·ai·rust·go
Ashlee_code1 小时前
经纪柜台系统解析:从今日国际金融动荡看证券交易核心引擎的变革
python·架构·系统架构·区块链·vim·柜台·香港券商
菜鸟‍1 小时前
【论文学习】基于 Transformer 的图像分割模型
深度学习·学习·transformer
清空mega1 小时前
从零开始搭建 flask 博客实验(4)
后端·python·flask
智启七月2 小时前
从 token 到向量:微信 CALM 模型颠覆大语言模型范式
人工智能·深度学习
咋吃都不胖lyh2 小时前
比较两个excel文件的指定列是否一致
爬虫·python·pandas
0小豆03 小时前
【系列开篇】从零构建智能字幕校准系统:一个AI+微服务的完整实战之旅
spring boot·python·nlp·微服务架构·实战项目·spacy·ai算法