损失函数与反向传播

计算l1loss mseloss

复制代码
import torch
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss(reduction='sum')
result = loss(inputs,targets)

loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)

print(result)
print(result_mse)

交叉熵·

复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    print(result_loss)

反向传播grad对参数优化,梯度下降,对参数更新,达到降阶。

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class XuZhenyu(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10),

        )

    def forward(self,x):
        x=self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
xzy = XuZhenyu()
for data in dataloader:
    imgs,targets = data
    outputs = xzy(imgs)
    result_loss = loss(outputs,targets)
    #print(result_loss)
    result_loss.backward()
    print("ok")
相关推荐
枷锁—sha21 分钟前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy36 分钟前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
喵手1 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
pp起床1 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
天天爱吃肉82182 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
m0_715575342 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
甄心爱学习2 小时前
【leetcode】判断平衡二叉树
python·算法·leetcode
深蓝电商API2 小时前
滑块验证码破解思路与常见绕过方法
爬虫·python
Ulyanov2 小时前
Pymunk物理引擎深度解析:从入门到实战的2D物理模拟全攻略
python·游戏开发·pygame·物理引擎·pymunk
阿杰学AI2 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer