二阶变系数线性微分方程

1、变量替换法

欧拉方程

是常数,是已知的函数。

二阶欧拉方程

(1)

时,令,则

代入(1)中,

.这样就把欧拉方程,化成了二阶常系数非齐次微分方程

当x<0时,令,

例题

解:令,则

代入上面的推导得

所以

2、降阶法

(1)

齐次线性微分方程都是有解的

设(1)有一个已经的非零解

令y=u,其中u=u(x)是一个待定函数。

代入(1)

因为是解,代入(1)中,公式恒成立,所以

成立

所以

转换成一个以u为函数,x自变量的二阶微分方程。

阶数没有阶,再次引入新的变量

转换成一个以z为函数,x自变量的一阶可分离变量方程。

两边求积分

z=0 也是解,即的情形

所以

所以(1)的通解为

刘维尔公式

相关推荐
AKAMAI3 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元4 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元4 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心4 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术4 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing5 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_5 小时前
NCCL的用户缓冲区注册
人工智能
sans_5 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算5 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc
虫无涯6 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm