二阶变系数线性微分方程

1、变量替换法

欧拉方程

是常数,是已知的函数。

二阶欧拉方程

(1)

时,令,则

代入(1)中,

.这样就把欧拉方程,化成了二阶常系数非齐次微分方程

当x<0时,令,

例题

解:令,则

代入上面的推导得

所以

2、降阶法

(1)

齐次线性微分方程都是有解的

设(1)有一个已经的非零解

令y=u,其中u=u(x)是一个待定函数。

代入(1)

因为是解,代入(1)中,公式恒成立,所以

成立

所以

转换成一个以u为函数,x自变量的二阶微分方程。

阶数没有阶,再次引入新的变量

转换成一个以z为函数,x自变量的一阶可分离变量方程。

两边求积分

z=0 也是解,即的情形

所以

所以(1)的通解为

刘维尔公式

相关推荐
l木本I7 分钟前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
通义灵码13 分钟前
在 IDEA 里用 AI 写完两个 Java 全栈功能,花了 7 分钟
人工智能·ai编程·qoder
TracyCoder12314 分钟前
机器学习与深度学习基础(五):深度神经网络经典架构简介
深度学习·机器学习·dnn
AI营销快线17 分钟前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启19 分钟前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
宁大小白20 分钟前
pythonstudy Day31
python·机器学习
xiaoxiaoxiaolll24 分钟前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
OpenCSG25 分钟前
现代 AI 代理设计:17 种架构的系统化实战合集
人工智能·架构
AKAMAI30 分钟前
BlackstoneOne 实现业务十倍增长
人工智能·云计算
KKKlucifer33 分钟前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类