【学习笔记】混淆矩阵

混淆矩阵(Confusion Matrix),又称为错误矩阵,是一种特别适用于监督学习中分类问题评估模型性能的工具。在机器学习领域,混淆矩阵能够清晰地显示算法模型的分类结果和实际情况之间的差异,常用于二分类和多分类问题。

一个基本的二分类混淆矩阵包含四个部分:

  1. 真正类(True Positive, TP):模型正确预测为正类的样本数。
  2. 假正类(False Positive, FP):模型错误预测为正类的样本数,实际上它们是负类。
  3. 真负类(True Negative, TN):模型正确预测为负类的样本数。
  4. 假负类(False Negative, FN):模型错误预测为负类的样本数,实际上它们是正类。

混淆矩阵通常以表格形式表示,对于二分类问题,其形式如下:

通过混淆矩阵,我们可以计算出多种性能指标来评估分类模型的性能,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)或者真正率(True Positive Rate,TPR)、假正率(False Positive Rate,FPR)以及F1分数等。

准确率(Accuracy)是最直观的性能指标,计算公式为:
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac {TP + TN} {TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN

精确率(Precision)关注的是预测为正类的样本中有多少是真正的正类,计算公式为:
P r e c i s i o n = T P T P + F P Precision = \frac {TP }{TP + FP} Precision=TP+FPTP

召回率(Recall)或真正率(TPR)关注的是所有真正的正类样本中有多少被模型预测为正类,计算公式为:
R e c a l l = T P T P + F N Recall = \frac {TP}{TP + FN} Recall=TP+FNTP

F1分数是精确率和召回率的调和平均值,计算公式为:
F 1 = 2 ∗ ( P r e c i s i o n ∗ R e c a l l ) P r e c i s i o n + R e c a l l F1 = \frac {2 * (Precision * Recall) }{Precision + Recall} F1=Precision+Recall2∗(Precision∗Recall)

对于多分类问题,混淆矩阵会更大,每一行代表实际类别,每一列代表预测类别,但计算各项指标的原理与二分类问题相同。

混淆矩阵的优点在于它不仅提供了错误分类的数量,还告诉我们哪些类别的预测错误最多,这对于改进分类算法和模型调优非常有帮助。

相关推荐
沉下心来学鲁班2 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr11 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202423 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食27 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python
北京搜维尔科技有限公司1 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
@小博的博客1 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
说私域1 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr1 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer