自注意力机制中的gen_nopeek_mask()函数

"no-peek"掩码通常用于在自注意力机制中,确保模型在生成序列时只能注意到当前位置之前的信息,而不能"窥视"未来的信息

python 复制代码
def gen_nopeek_mask(length):    
    mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask.to(device)
  1. torch.triu(torch.ones(length, length)) == 1: 创建一个大小为 (length, length) 的上三角矩阵,其中上三角的元素为1,下三角的元素为0。

  2. .transpose(0, 1): 将矩阵进行转置,得到对角线上方的区域。

  3. mask = mask.float(): 将布尔类型的矩阵转换为浮点数类型。

  4. .masked_fill(mask == 0, float('-inf')): 将矩阵中值为0的位置用负无穷(-∞)填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将趋近于零,表示模型在这些位置不应该关注。

  5. .masked_fill(mask == 1, float(0.0)): 将矩阵中值为1的位置用0填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将保持为1,表示模型在这些位置应该关注。

最终,mask 是一个上三角矩阵,其中对角线及其以下的元素为负无穷,而对角线以上的元素为0。这样的矩阵在自注意力机制中被用作掩码,确保模型在生成每个位置时只关注之前的位置,而不会使用未来的信息。

让我们使用一个具体的长度来演示 gen_nopeek_mask 函数,比如 length = 4。以下是运行这个函数的示例:

python 复制代码
import torch

def gen_nopeek_mask(length):
    mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

# 生成长度为 4 的 nopeek mask
mask_example = gen_nopeek_mask(4)
print(mask_example)
复制代码
运行这个示例,将得到一个 4x4 的矩阵,其中包含了上三角区域以及对角线以下的部分:
bash 复制代码
tensor([[ 0., -inf, -inf, -inf],
        [ 0.,  0., -inf, -inf],
        [ 0.,  0.,  0., -inf],
        [ 0.,  0.,  0.,  0.]])

这个矩阵是一个示例的 "no-peek" 掩码。在这个掩码中,对角线以下和对角线上的元素被设置为负无穷和零,以确保在自注意力机制中,模型只能关注当前位置之前的信息。这种掩码通常在 Transformer 模型中的解码器中使用。

将矩阵中值为0的位置用负无穷(-∞)填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将趋近于0,表示模型在这些位置不应该关注

将矩阵中值为1的位置用0填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将保持为1,表示模型在这些位置应该关注

相关推荐
AndrewHZ5 分钟前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊12 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue26 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏39 分钟前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
一车小面包1 小时前
机器学习--决策树
决策树·机器学习
nonono1 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络