自注意力机制中的gen_nopeek_mask()函数

"no-peek"掩码通常用于在自注意力机制中,确保模型在生成序列时只能注意到当前位置之前的信息,而不能"窥视"未来的信息

python 复制代码
def gen_nopeek_mask(length):    
    mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask.to(device)
  1. torch.triu(torch.ones(length, length)) == 1: 创建一个大小为 (length, length) 的上三角矩阵,其中上三角的元素为1,下三角的元素为0。

  2. .transpose(0, 1): 将矩阵进行转置,得到对角线上方的区域。

  3. mask = mask.float(): 将布尔类型的矩阵转换为浮点数类型。

  4. .masked_fill(mask == 0, float('-inf')): 将矩阵中值为0的位置用负无穷(-∞)填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将趋近于零,表示模型在这些位置不应该关注。

  5. .masked_fill(mask == 1, float(0.0)): 将矩阵中值为1的位置用0填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将保持为1,表示模型在这些位置应该关注。

最终,mask 是一个上三角矩阵,其中对角线及其以下的元素为负无穷,而对角线以上的元素为0。这样的矩阵在自注意力机制中被用作掩码,确保模型在生成每个位置时只关注之前的位置,而不会使用未来的信息。

让我们使用一个具体的长度来演示 gen_nopeek_mask 函数,比如 length = 4。以下是运行这个函数的示例:

python 复制代码
import torch

def gen_nopeek_mask(length):
    mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

# 生成长度为 4 的 nopeek mask
mask_example = gen_nopeek_mask(4)
print(mask_example)
复制代码
运行这个示例,将得到一个 4x4 的矩阵,其中包含了上三角区域以及对角线以下的部分:
bash 复制代码
tensor([[ 0., -inf, -inf, -inf],
        [ 0.,  0., -inf, -inf],
        [ 0.,  0.,  0., -inf],
        [ 0.,  0.,  0.,  0.]])

这个矩阵是一个示例的 "no-peek" 掩码。在这个掩码中,对角线以下和对角线上的元素被设置为负无穷和零,以确保在自注意力机制中,模型只能关注当前位置之前的信息。这种掩码通常在 Transformer 模型中的解码器中使用。

将矩阵中值为0的位置用负无穷(-∞)填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将趋近于0,表示模型在这些位置不应该关注

将矩阵中值为1的位置用0填充。这样,在计算注意力权重时,这些位置的值经过 softmax 函数后将保持为1,表示模型在这些位置应该关注

相关推荐
沛沛老爹几秒前
从Web开发到AI应用——用FastGPT构建实时问答系统
前端·人工智能·langchain·rag·advanced-rag
戴西软件几秒前
CAxWorks.VPG车辆工程仿真软件:打造新能源汽车安全的“数字防线“
android·大数据·运维·人工智能·安全·低代码·汽车
yuanmenghao3 分钟前
自动驾驶中间件iceoryx-介绍
人工智能·中间件·自动驾驶
weixin199701080164 分钟前
哔哩哔哩 item_search_video - 根据关键词获取视频列表接口对接全攻略:从入门到精通
人工智能·音视频
山海青风4 分钟前
人工智能基础与应用 - 数据处理、建模与预测流程 2 : 数据与问题类型
人工智能·python
这张生成的图像能检测吗5 分钟前
(论文速读)VJTNN+GAN分子优化的图到图翻译
人工智能·图神经网络·生成模型·分子设计·药物发现
AI营销实验室7 分钟前
2025年AI CRM系统前瞻:原圈科技智能线索分配机制解析
大数据·人工智能
week_泽8 分钟前
7、OpenCV ORB特征检测笔记
人工智能·笔记·opencv
jay神8 分钟前
基于YOLOv8的行人车辆检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
橙汁味的风10 分钟前
3机器学习3步走框架
人工智能·机器学习