空间金字塔池化(SPP,Spatial Pyramid Pooling)系列

空间金字塔池化的作用是解决输入图片大小不一造成的缺陷,同时在目标识别中增加了精度。空间金字塔池化可以使得任意大小的特征图都能够转换成固定大小的特征向量,下面针对一些典型的空间金字塔进行盘点。

部分图片来自blog:空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC_金字塔池化模块-CSDN博客, 侵删

(1)SPP, Spatial Pyramid Pooling

paper:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition

paper link: https://arxiv.org/abs/1406.4729

repo link: https://github.com/yifanjiang19/sppnet-pytorch

核心思想

把经典的金字塔池化结构Spatial Pyramid Pooling引入CNN中,从而使CNN可以处理任意尺寸的图片

框架

具有空间金字塔池化层的网络结构。这里256是conv5层的卷积核个数,conv5是最后一个卷积层。

code_pytorch

python 复制代码
import math
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
class SPP_NET(nn.Module):
    '''
    A CNN model which adds spp layer so that we can input multi-size tensor
    '''
    def __init__(self, opt, input_nc, ndf=64,  gpu_ids=[]):
        super(SPP_NET, self).__init__()
        self.gpu_ids = gpu_ids
        self.output_num = [4,2,1]
        
        self.conv1 = nn.Conv2d(input_nc, ndf, 4, 2, 1, bias=False)
        
        self.conv2 = nn.Conv2d(ndf, ndf * 2, 4, 1, 1, bias=False)
        self.BN1 = nn.BatchNorm2d(ndf * 2)

        self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 1, 1, bias=False)
        self.BN2 = nn.BatchNorm2d(ndf * 4)

        self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 1, 1, bias=False)
        self.BN3 = nn.BatchNorm2d(ndf * 8)

        self.conv5 = nn.Conv2d(ndf * 8, 64, 4, 1, 0, bias=False)
        self.fc1 = nn.Linear(10752,4096)
        self.fc2 = nn.Linear(4096,1000)

    def forward(self,x):
        x = self.conv1(x)
        x = self.LReLU1(x)

        x = self.conv2(x)
        x = F.leaky_relu(self.BN1(x))

        x = self.conv3(x)
        x = F.leaky_relu(self.BN2(x))
        
        x = self.conv4(x)
        # x = F.leaky_relu(self.BN3(x))
        # x = self.conv5(x)
        spp = spatial_pyramid_pool(x,1,[int(x.size(2)),int(x.size(3))],self.output_num)
        # print(spp.size())
        fc1 = self.fc1(spp)
        fc2 = self.fc2(fc1)
        s = nn.Sigmoid()
        output = s(fc2)
        return output
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
    '''
    previous_conv: a tensor vector of previous convolution layer
    num_sample: an int number of image in the batch
    previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
    out_pool_size: a int vector of expected output size of max pooling layer
    
    returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
    '''    
    # print(previous_conv.size())
    for i in range(len(out_pool_size)):
        # print(previous_conv_size)
        h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
        w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
        h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
        w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
        maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
        x = maxpool(previous_conv)
        if(i == 0):
            spp = x.view(num_sample,-1)
            # print("spp size:",spp.size())
        else:
            # print("size:",spp.size())
            spp = torch.cat((spp,x.view(num_sample,-1)), 1)
    return spp

(2)SPPF(Spatial Pyramid Pooling -Fast)

paper: 由于SPPF是yolov5作者基于SPP提出的,所以没有论文出处

yolov5 link: https://github.com/ultralytics/yolov5

code_pytorch

python 复制代码
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

(3)ASPP(Simplified SPPF)

paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

paper link: https://arxiv.org/pdf/1606.00915.pdf

repo link: https://github.com/kazuto1011/deeplab-pytorch

核心思想

提出了不对称空间金字塔池(ASPP)来在多个尺度上稳健地分割对象。ASPP在多个采样率和有效视场下使用滤波器探测传入的卷积特征层,从而在多个尺度上捕获对象和图像上下文。

code_pytorch

python 复制代码
class _ASPP(nn.Module):
    """
    Atrous spatial pyramid pooling (ASPP)
    """

    def __init__(self, in_ch, out_ch, rates):
        super(_ASPP, self).__init__()
        for i, rate in enumerate(rates):
            self.add_module(
                "c{}".format(i),
                nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
            )

        for m in self.children():
            nn.init.normal_(m.weight, mean=0, std=0.01)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        return sum([stage(x) for stage in self.children()])

(4)RFB

paper: Receptive Field Block Net for Accurate and Fast Object Detection

paper link: https://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

repo link: GitHub - GOATmessi7/RFBNet: Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

核心思想

受感受野(RF)结构的启发,我们提出了一种新的RF Block(RFB)模块,该模块考虑了RF的大小和偏心率之间的关系,以增强特征的可分辨性和鲁棒性。

Code_Pytorch

python 复制代码
class BasicRFB(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1, visual = 1):
        super(BasicRFB, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // 8
        self.branch0 = nn.Sequential(
                BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual, dilation=visual, relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, 2*inter_planes, kernel_size=(3,3), stride=stride, padding=(1,1)),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual+1, dilation=visual+1, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, (inter_planes//2)*3, kernel_size=3, stride=1, padding=1),
                BasicConv((inter_planes//2)*3, 2*inter_planes, kernel_size=3, stride=stride, padding=1),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*visual+1, dilation=2*visual+1, relu=False)
                )

        self.ConvLinear = BasicConv(6*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)

        out = torch.cat((x0,x1,x2),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out



class BasicRFB_a(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1):
        super(BasicRFB_a, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes //4


        self.branch0 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=1,relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(3,1), stride=1, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(1,3), stride=stride, padding=(0,1)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch3 = nn.Sequential(
                BasicConv(in_planes, inter_planes//2, kernel_size=1, stride=1),
                BasicConv(inter_planes//2, (inter_planes//4)*3, kernel_size=(1,3), stride=1, padding=(0,1)),
                BasicConv((inter_planes//4)*3, inter_planes, kernel_size=(3,1), stride=stride, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
                )

        self.ConvLinear = BasicConv(4*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)

        out = torch.cat((x0,x1,x2,x3),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out

class RFBNet(nn.Module):
    """RFB Net for object detection
    The network is based on the SSD architecture.
    Each multibox layer branches into
        1) conv2d for class conf scores
        2) conv2d for localization predictions
        3) associated priorbox layer to produce default bounding
           boxes specific to the layer's feature map size.
    See: https://arxiv.org/pdf/1711.07767.pdf for more details on RFB Net.

    Args:
        phase: (string) Can be "test" or "train"
        base: VGG16 layers for input, size of either 300 or 512
        extras: extra layers that feed to multibox loc and conf layers
        head: "multibox head" consists of loc and conf conv layers
    """

    def __init__(self, phase, size, base, extras, head, num_classes):
        super(RFBNet, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.size = size

        if size == 300:
            self.indicator = 3
        elif size == 512:
            self.indicator = 5
        else:
            print("Error: Sorry only SSD300 and SSD512 are supported!")
            return
        # vgg network
        self.base = nn.ModuleList(base)
        # conv_4
        self.Norm = BasicRFB_a(512,512,stride = 1,scale=1.0)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])
        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """Applies network layers and ops on input image(s) x.

        Args:
            x: input image or batch of images. Shape: [batch,3*batch,300,300].

        Return:
            Depending on phase:
            test:
                list of concat outputs from:
                    1: softmax layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]

            train:
                list of concat outputs from:
                    1: confidence layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]
        """
        sources = list()
        loc = list()
        conf = list()

        # apply vgg up to conv4_3 relu
        for k in range(23):
            x = self.base[k](x)

        s = self.Norm(x)
        sources.append(s)

        # apply vgg up to fc7
        for k in range(23, len(self.base)):
            x = self.base[k](x)

        # apply extra layers and cache source layer outputs
        for k, v in enumerate(self.extras):
            x = v(x)
            if k < self.indicator or k%2 ==0:
                sources.append(x)

        # apply multibox head to source layers
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())

        #print([o.size() for o in loc])


        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

        if self.phase == "test":
            output = (
                loc.view(loc.size(0), -1, 4),                   # loc preds
                self.softmax(conf.view(-1, self.num_classes)),  # conf preds
            )
        else:
            output = (
                loc.view(loc.size(0), -1, 4),
                conf.view(conf.size(0), -1, self.num_classes),
            )
        return output

    def load_weights(self, base_file):
        other, ext = os.path.splitext(base_file)
        if ext == '.pkl' or '.pth':
            print('Loading weights into state dict...')
            self.load_state_dict(torch.load(base_file))
            print('Finished!')
        else:
            print('Sorry only .pth and .pkl files supported.')


# This function is derived from torchvision VGG make_layers()
# https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

(5)SPPCSPC

paper: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

paper link: https://arxiv.org/pdf/2207.02696v1.pdf

repo link: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors | Papers With Code

code_pytorch

python 复制代码
class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

(6) SimCSPSPPF

paper: YOLOv6 v3.0: A Full-Scale Reloading

paper link: https://arxiv.org/abs/2301.05586

repo link: GitHub - meituan/YOLOv6: YOLOv6: a single-stage object detection framework dedicated to industrial applications.

本文将SPPF简化为SimCSPSPF块,带来了性能增益,而速度退化可以忽略不计。

此外,探讨了不同类型的SPP块的影响,包括SPPF和SPPCSPC的简化变体(分别表示为SimSPPF和SimSPPCSPC)以及SimCSPSPF块,性能对比如下。

code_pytorch

python 复制代码
class SPPFModule(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        c_ = in_channels // 2  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(c_ * 4, out_channels, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


class SimSPPF(nn.Module):
    '''Simplified SPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class SPPF(nn.Module):
    '''SPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNSiLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class CSPSPPFModule(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        c_ = int(out_channels * e)  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(in_channels, c_, 1, 1)
        self.cv3 = block(c_, c_, 3, 1)
        self.cv4 = block(c_, c_, 1, 1)

        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
        self.cv5 = block(4 * c_, c_, 1, 1)
        self.cv6 = block(c_, c_, 3, 1)
        self.cv7 = block(2 * c_, out_channels, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y0 = self.cv2(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x1)
            y2 = self.m(y1)
            y3 = self.cv6(self.cv5(torch.cat([x1, y1, y2, self.m(y2)], 1)))
        return self.cv7(torch.cat((y0, y3), dim=1))


class SimCSPSPPF(nn.Module):
    '''CSPSPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)


class CSPSPPF(nn.Module):
    '''CSPSPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNSiLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)
相关推荐
罗小罗同学4 分钟前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤7 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭10 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~11 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码17 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113318 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike19 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
YRr YRr1 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
HPC_fac130520678164 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
老艾的AI世界12 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲