【Pytorch】固定随机数种子

在对神经网络模型进行训练时,有时候会存在对训练过程进行复现的需求。然而,每次运行时 Pytorch、Numpy 中的随机性将使得该目的变得困难重重。在程序运行前固定所有随机数的种子有望解决这一问题。基于此,本文记录了 Pytorch 中的固定随机数种子的方法。

在使用 Pytorch 对模型进行训练时,通常涉及到随机数的模块包括:Python、Pytorch、Numpy、Cudnn。因此,在开始训练前,需要针对这些涉及随机数的模块进行随机数种子的固定。

1. Python

Python 本身涉及到的随机性主要是 Python 自带的 random 库随机化和 Hash 随机化问题,需要通过 os 库对其进行限制:

python 复制代码
import os, random
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
2. Numpy

在使用 Numpy 库取随机数时,需要对其随机数种子进行限制:

python 复制代码
import numpy as np
np.random.seed(seed)
3. Pytorch

当 Pytorch 使用 CPU 进行运算时,需要设定 CPU 支撑下的 Pytorch 随机数种子:

python 复制代码
import torch
torch.manual_seed(seed)

当 Pytorch 使用 GPU 进行运算时,需要设定 GPU 支撑下的 Pytorch 随机数种子:

python 复制代码
import torch
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # 使用多 GPU 时使用

需要特别注意的是:目前很多博客和知乎回答提出 torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed) 具有相同的作用。这个结论需要注意 Pytorch 版本。在笔者所用的 Pytorch 2.1 版本下,这两个函数的作用完全不同。参考官方文档:torch.cuda.manual_seedtorch.cuda.manual_seed_all(seed)

当 Pytorch 使用 Cudnn 进行加速运算时,还需要限制 Cudnn 在加速过程中涉及到的随机策略:

python 复制代码
import torch
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
总结

基于上述库的固定随机数方法总结为:

python 复制代码
def set_random_seed(seed: int) -> None:
	random.seed(seed)
	os.environ['PYTHONHASHSEED'] = str(seed)
	np.random.seed(seed)
	torch.manual_seed(seed)
	torch.cuda.manual_seed_all(seed)
	torch.backends.cudnn.benchmark = False
	torch.backends.cudnn.deterministic = True

seed = 114514
set_torch_seed(seed)

如果在实践中还调用了其他涉及随机性的第三方库,则需要根据上述思路对该固定随机数方法进行动态补充。

相关推荐
WJX_KOI44 分钟前
Open Notebook 一个开源的结合AI的记笔记软件
python
0思必得02 小时前
[Web自动化] 反爬虫
前端·爬虫·python·selenium·自动化
Elastic 中国社区官方博客2 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2301_822382762 小时前
Python上下文管理器(with语句)的原理与实践
jvm·数据库·python
喵手2 小时前
Python爬虫实战:从零搭建字体库爬虫 - requests+lxml 实战采集字体网字体信息数据(附 CSV 导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·csv导出·采集字体库数据·字体库字体信息采集
2501_933329553 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI3 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅3 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
2301_790300963 小时前
Python深度学习入门:TensorFlow 2.0/Keras实战
jvm·数据库·python
管牛牛3 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉