pytorch 中的dim 的作用范围

1. 二维矩阵时

不同的运算, dim 的作用域都是一样的思想;

当数据是二维矩阵时, 可以按照下面的思想理解

对于矩阵:

dim=0 按列操作(沿列向下)。

dim=1 按行操作(跨行)。

解释如下:

dim=0 :这是指张量的第一个维度,通常被视为行。如果您沿此维度应用函数,它将按列处理数据。换句话说,该函数独立地应用于每一列。

dim=1 :这是指张量的第二维,通常被视为列。当您沿此维度应用函数时,它会按行处理数据。也就是说,该函数独立地应用于每一行。

1.1 求和

python 复制代码
>> a = torch.Tensor([[1,2,3], [4,5,6]])
>> print(a.shape)
torch.Size([2, 3])

>> print(torch.sum(a, dim=0))
tensor([5., 7., 9.])

>> print(torch.sum(a, dim=1))
tensor([ 6., 15.])

1.2 softmax

dim = 0) #对每一列进行softmax;

dim =1) #对每一行进行softmax;

python 复制代码
import torch

import torch.nn.functional as F

x= torch.Tensor( [ [1,2,3,4],[1,2,3,4],[1,2,3,4]])

y1= F.softmax(x, dim = 0) #对每一列进行softmax
print(y1)

y2 = F.softmax(x,dim =1) #对每一行进行softmax
print(y2)

x1 = torch.Tensor([1,2,3,4])
print(x1)

y3 = F.softmax(x1,dim=0) #一维时使用dim=0,使用dim=1报错
print(y3)
python 复制代码
(deeplearning) userdeMBP:pytorch user$ python test.py 
tensor([[0.3333, 0.3333, 0.3333, 0.3333],
        [0.3333, 0.3333, 0.3333, 0.3333],
        [0.3333, 0.3333, 0.3333, 0.3333]])
tensor([[0.0321, 0.0871, 0.2369, 0.6439],
        [0.0321, 0.0871, 0.2369, 0.6439],
        [0.0321, 0.0871, 0.2369, 0.6439]])
tensor([1., 2., 3., 4.])
tensor([0.0321, 0.0871, 0.2369, 0.6439])

2. 三维张量时

当dim=0时, 是对每一维度相同位置的数值进行softmax运算,和为1

当dim=1时, 是对某一维度的列进行softmax运算,和为1

当dim=2时, 是对某一维度的行进行softmax运算,和为1

python 复制代码
import torch 
import torch.nn.functional as F 
input= torch.randn(2,2,3))
print(input)

dim= 0,

dim=1,

dim =2

相关推荐
大任视点13 小时前
太空能源风口来袭!海目星领跑太空光伏与固态设备赛道
大数据·人工智能
啊阿狸不会拉杆13 小时前
《机器学习导论》第3章 -贝叶斯决策理论
人工智能·python·算法·机器学习·numpy·深度优先·贝叶斯决策理论
元智启13 小时前
企业AI开发如何避免“智能陷阱”:从概念验证到规模落地的务实路径
人工智能
Gofarlic_OMS13 小时前
Altium许可证状态自动化监控方案
大数据·运维·服务器·人工智能·自动化·github
冰西瓜60013 小时前
从项目入手机器学习(七)—— 模型调优
人工智能·机器学习
LittroInno13 小时前
TVMS视频管理平台 —— 目标识别跟踪
人工智能·计算机视觉·音视频
pusheng202513 小时前
燃料电池电化学传感器在硫化物固态电池安全监测中的技术优势解析
前端·人工智能·安全
小贺儿开发13 小时前
Unity3D 智慧城市管理平台
数据库·人工智能·unity·智慧城市·数据可视化
Niuguangshuo13 小时前
DALL-E 3:如何通过重构“文本描述“革新图像生成
人工智能·深度学习·计算机视觉·stable diffusion·重构·transformer
DeniuHe13 小时前
Pytorch中统计学相关的函数
pytorch·python·深度学习