pytorch 中的dim 的作用范围

1. 二维矩阵时

不同的运算, dim 的作用域都是一样的思想;

当数据是二维矩阵时, 可以按照下面的思想理解

对于矩阵:

dim=0 按列操作(沿列向下)。

dim=1 按行操作(跨行)。

解释如下:

dim=0 :这是指张量的第一个维度,通常被视为行。如果您沿此维度应用函数,它将按列处理数据。换句话说,该函数独立地应用于每一列。

dim=1 :这是指张量的第二维,通常被视为列。当您沿此维度应用函数时,它会按行处理数据。也就是说,该函数独立地应用于每一行。

1.1 求和

python 复制代码
>> a = torch.Tensor([[1,2,3], [4,5,6]])
>> print(a.shape)
torch.Size([2, 3])

>> print(torch.sum(a, dim=0))
tensor([5., 7., 9.])

>> print(torch.sum(a, dim=1))
tensor([ 6., 15.])

1.2 softmax

dim = 0) #对每一列进行softmax;

dim =1) #对每一行进行softmax;

python 复制代码
import torch

import torch.nn.functional as F

x= torch.Tensor( [ [1,2,3,4],[1,2,3,4],[1,2,3,4]])

y1= F.softmax(x, dim = 0) #对每一列进行softmax
print(y1)

y2 = F.softmax(x,dim =1) #对每一行进行softmax
print(y2)

x1 = torch.Tensor([1,2,3,4])
print(x1)

y3 = F.softmax(x1,dim=0) #一维时使用dim=0,使用dim=1报错
print(y3)
python 复制代码
(deeplearning) userdeMBP:pytorch user$ python test.py 
tensor([[0.3333, 0.3333, 0.3333, 0.3333],
        [0.3333, 0.3333, 0.3333, 0.3333],
        [0.3333, 0.3333, 0.3333, 0.3333]])
tensor([[0.0321, 0.0871, 0.2369, 0.6439],
        [0.0321, 0.0871, 0.2369, 0.6439],
        [0.0321, 0.0871, 0.2369, 0.6439]])
tensor([1., 2., 3., 4.])
tensor([0.0321, 0.0871, 0.2369, 0.6439])

2. 三维张量时

当dim=0时, 是对每一维度相同位置的数值进行softmax运算,和为1

当dim=1时, 是对某一维度的列进行softmax运算,和为1

当dim=2时, 是对某一维度的行进行softmax运算,和为1

python 复制代码
import torch 
import torch.nn.functional as F 
input= torch.randn(2,2,3))
print(input)

dim= 0,

dim=1,

dim =2

相关推荐
lishaoan773 分钟前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
AI让世界更懂你11 分钟前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理
牛客企业服务1 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
视觉语言导航2 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
**梯度已爆炸**2 小时前
自然语言处理入门
人工智能·自然语言处理
ctrlworks2 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂3 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊3 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道3 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~3 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘