vLLM介绍

简介

vLLM 工程github地址
Paged attention论文地址

vLLM开发者介绍

Woosuk Kwon

vLLM: A high-throughput and memory-efficient inference and serving engine for LLMs.

SkyPilot: A framework for easily and cost effectively running machine learning workloads on any cloud.

Zhuohan Li

vLLM: A high-throughput and memory-efficient serving engine for large language models, accelerated with PagedAttention.

Vicuna: An open-source chatbot impressing GPT-4 with 90% ChatGPT quality.

AlpaServe: Use model parallelism to accelerate deep learning serving, even when models fit a single GPU.

Alpa: Automate model parallel training with just a few lines of code.

Features

  • SOTA最先进的服务吞吐量
  • 高效的显存管理:PagedAttention高效管理kv memory,multi-query attention
  • 传入请求的Continuous batching
  • 优化的CUDA kernels。比如从Faster Transformer release 5.3中移植过来的attention kernel。实现了layernorm和position encoding kernels。
  • 支持多卡GPU推理,目前只支持Tensor parallel,不支持pipeline parallel
  • 最新开源模型支持,更新速度非常快:llama, llama2, 百川,通义千问,书生等等

主要解决的问题

由于LLMs以迭代方式生成其输出,LLM服务的性能受到内存的限制(内存和IO受限型memory-IO bound),计算资源不是瓶颈。就是说,当前将1MB的数据加载到GPU的计算核心所花费的时间比这些计算core对1MB数据执行LLM计算所花费的更多。这意味着LLM推理吞吐量在很大程度上取决于您可以将多大的batch放入高带宽GPU内存。参见(processor's ops:byte ratio.)

在自回归解码过程中,LLM的所有输入tokens产生它们的attention key and value tensors,并且这些tensors被保存在GPU存储器中以生成下一个token。这些缓存的key and value tensors通常被称为KV缓存。由于碎片和过度预留,现有系统浪费了60%-80%的显卡内存。

vLLM的解决方案

减少显存的碎片和过度预留问题可以显著的提升推理性能。VLLM的主要解决思路是:

以下是 AnyScale 公司针对VLLM做的continuous-batching-llm-inference评测结论:

我们想要看看这种优化的性能如何。我们将详细讨论以下内容,包括我们如何模拟生产工作负载,但是总结我们的发现:

  • 使用continuous batching和Paged attention内存优化(使用vLLM),吞吐量可提高高达23倍。
  • 通过使用continuous batching(在Ray Serve和Hugging Face的text-generation-inference上),吞吐量比简单batch提高8倍。
  • 通过优化的模型实现(NVIDIA的Faster Transformer优化介绍),吞吐量比简单batch提高4倍。

vLLM Work Through

详细参考绑定的资源:vLLM First SF Meetup Slides。是2个作者写的比较详细

性能评测 TBD

相关推荐
kakaZhui2 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
山顶夕景2 小时前
【LLM-agent】(task2)用llama-index搭建AI Agent
大模型·llm·agent·智能体·llama-index
GISer_Jing7 小时前
AIGC时代的Vue或React前端开发
vue.js·react.js·aigc
kakaZhui10 小时前
【llm对话系统】大模型 Llama 源码分析之 LoRA 微调
pytorch·深度学习·chatgpt·aigc·llama
大模型之路11 小时前
DeepSeek Janus-Pro:多模态AI模型的突破与创新
llm·强化学习·deepseek·deepseekr1
qq_4177199817 小时前
DIFY源码解析
人工智能·aigc·源码·注释·dify
kakaZhui1 天前
【llm对话系统】大模型 Llama 源码分析之 Flash Attention
人工智能·chatgpt·aigc·llama
kakaZhui1 天前
【llm对话系统】大模型 Llama 源码分析之并行训练方案
人工智能·chatgpt·aigc·llama