计算机视觉之手势、面部、姿势捕捉以Python Mediapipe为工具

计算机视觉之手势、面部、姿势捕捉以 Python Mediapipe为工具

文章目录

1.Mediapipe库概述

Mediapipe是一个开源且强大的Python库,由Google开发和维护。它提供了丰富的工具和功能,用于处理实时多媒体数据。它可以帮助开发者快速构建各种视觉和音频处理应用,并允许他们灵活地定制和扩展库的功能。

Mediapipe库的主要功能包括:

  1. 视觉处理:Mediapipe可以进行人脸检测、姿势估计、手部跟踪等。它通过使用预训练的模型和算法来分析图像或视频,并提供相应的结果。这使得开发者能够轻松地实现各种视觉处理任务。
  2. 音频处理:Mediapipe还可以进行音频信号的处理,例如语音识别、音频增强、语音转换等。它提供了一些内置的音频处理模块,开发者可以使用这些模块来快速构建自己的音频处理流水线。
  3. 数据流处理:Mediapipe库还提供了一套用于处理数据流的工具。开发者可以使用这些工具来构建复杂的数据处理流程,包括数据的输入、输出、转换和合并等。这使得开发者能够更方便地处理实时多媒体数据流。

本期博客,作者将分享使用Mediapipe库实现手势、面部、动作识别的方法。
    


2.手势捕捉(hands)

该段代码使用OpenCVMediaPipe库来检测摄像头视频中的手部,并在图像上绘制关键点和连接线。

python 复制代码
import cv2
import time
import mediapipe as mp

capture = cv2.VideoCapture(0)
mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils
pTime = 0
cTime = 0

while (capture.isOpened()):
    retval, img = capture.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = hands.process(imgRGB)

    if results.multi_hand_landmarks:
        for handLms in results.multi_hand_landmarks:
            for id, lm in enumerate(handLms.landmark):
                h, w, c = img.shape
                cx, cy = int(lm.x * w), int(lm.y * h)
                cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)
            mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime

    cv2.putText(img, "fps:"+str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 2,
                (0, 0, 255), 2)

    cv2.imshow("Video", img) 
    key = cv2.waitKey(1)
    if key == 32:
        break

capture.release()
cv2.destroyAllWindows()

效果展示:
      


关于代码,具体解释如下:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的Python标准库。
    • mediapipe as mp:MediaPipe库,用于手部检测和姿态估计。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe手部检测器:

    • 使用mp.solutions.hands.Hands()创建一个手部检测器对象。
    • hands.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用capture.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用hands.process(imgRGB)对图像进行手部检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.multi_hand_landmarks判断是否检测到了手部。
    • 对于每个检测到的手部,使用handLms.landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用cv2.circle()在图像中绘制关键点圆圈。
    • 使用mpDraw.draw_landmarks()在图像中绘制手部关键点和连接线。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(1)等待用户按键,参数1表示等待1毫秒。
  8. 释放资源:

    • 在循环结束后,使用capture.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

3.面部捕捉(face)

该段代码使用OpenCV和MediaPipe库来检测摄像头视频中的人脸,并在图像上绘制人脸关键点和轮廓。

python 复制代码
import cv2
import time
import mediapipe as mp

capture = cv2.VideoCapture(0)

mpFaceMesh = mp.solutions.face_mesh
faceMesh = mpFaceMesh.FaceMesh()
mpDraw = mp.solutions.drawing_utils

pTime = 0  # 上一帧的时间
cTime = 0  # 下一帧的时间

while (capture.isOpened()):

    retval, img = capture.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = faceMesh.process(imgRGB)

    if results.multi_face_landmarks:
        for faceLms in results.multi_face_landmarks:
            for id, lm in enumerate(faceLms.landmark):
                h, w, c = img.shape
                cx, cy = int(lm.x * w), int(lm.y * h)
                # cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)
            mpDraw.draw_landmarks(img, faceLms, mpFaceMesh.FACEMESH_CONTOURS)

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime

    cv2.putText(img, "fps:" + str(int(fps)), (10, 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 3)

    cv2.imshow("Video", img)
    key = cv2.waitKey(1)
    if key == 32:
        break

capture.release()
cv2.destroyAllWindows()

以电影情节画面替代摄像头画面,代码效果展示如下:


以下是代码的解释:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的标准Python库。
    • mediapipe as mp:MediaPipe库,用于人脸检测和特征点估计。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe人脸检测器:

    • 使用mp.solutions.face_mesh.FaceMesh()创建一个人脸检测器对象。
    • faceMesh.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用capture.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用faceMesh.process(imgRGB)对图像进行人脸检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.multi_face_landmarks判断是否检测到了人脸。
    • 对于每个检测到的人脸,使用faceLms.landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用mpDraw.draw_landmarks()在图像中绘制人脸关键点和轮廓。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(1)等待用户按键,参数1表示等待1毫秒。
  8. 释放资源:

    • 在循环结束后,使用capture.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

4.姿势捕捉(pose)

该段代码使用OpenCV和MediaPipe库来检测摄像头视频中的人体姿势,并在图像上绘制关键点和连接线。

python 复制代码
import cv2
import time
import mediapipe as mp

video = cv2.VideoCapture(0)
mpPose = mp.solutions.pose
pose = mpPose.Pose()
mpDraw = mp.solutions.drawing_utils

pTime = 0  # 上一帧的时间
cTime = 0  # 下一帧的时间

while True:
    retval, img = video.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = pose.process(imgRGB)

    if results.pose_landmarks:
        for id, lm in enumerate(results.pose_landmarks.landmark):
            h, w, c = img.shape
            cx, cy = int(lm.x * w), int(lm.y * h)
            cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)
        mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime

    cv2.putText(img, "fps:" + str(int(fps)), (10, 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 3)

    cv2.imshow("Video", img)
    key = cv2.waitKey(10)
    if key == 32:
        break

video.release()
cv2.destroyAllWindows()

效果展示:


以下是代码的解释:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的标准Python库。
    • mediapipe as mp:MediaPipe库,用于人体姿势检测。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe人体姿势检测器:

    • 使用mp.solutions.pose.Pose()创建一个人体姿势检测器对象。
    • pose.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用video.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用pose.process(imgRGB)对图像进行人体姿势检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.pose_landmarks判断是否检测到了人体姿势。
    • 对于每个检测到的关键点,使用landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用cv2.circle()在图像中绘制关键点圆圈。
    • 使用mpDraw.draw_landmarks()在图像中绘制人体姿势关键点和连接线。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(10)等待用户按键,参数10表示等待10毫秒。
  8. 释放资源:

    • 在循环结束后,使用video.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

附:侯小啾Python基础领航计划专栏已上线,特价专栏只需9.9即可扫清入门路上一切障碍。
跟着小啾,入门无忧!无论是系统化学习,还是碎片化学习都是很好的选择,点击下方链接即可订阅:
https://blog.csdn.net/weixin_48964486/category_12510091.html
更多精彩内容敬请期待,作者侯小啾持续为您推出!

相关推荐
EQUINOX16 分钟前
3b1b线性代数基础
人工智能·线性代数·机器学习
Kacey Huang27 分钟前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
加德霍克28 分钟前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业
Light Gao32 分钟前
AI赋能未来:Agent能力与AI中间件平台对行业的深远影响
人工智能·ai·中间件·大模型
matlabgoodboy33 分钟前
代码编写java代做matlab程序代编Python接单c++代写web系统设计
java·python·matlab
l1x1n042 分钟前
No.37 笔记 | Python面向对象编程学习笔记:探索代码世界的奇妙之旅
笔记·python·学习
骇客野人44 分钟前
【人工智能】循环神经网络学习
人工智能·rnn·学习
eguid_11 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
wanfeng_091 小时前
视频m3u8形式播放 -- python and html
python·html·video·hls·m3u8
阿俊仔(摸鱼版)1 小时前
Python 常用运维模块之OS模块篇
运维·开发语言·python·云服务器