卷积神经网络中用1*1 卷积有什么作用或者好处呢?

一、来源:[1312.4400] Network In Network (如果1×1卷积核接在普通的卷积层后面,配合激活函数,即可实现network in network的结构)

二、应用:GoogleNet中的Inception、ResNet中的残差模块

三、作用:

1、降维(减少参数)

例子1 : GoogleNet中的3a模块

输入的feature map是28×28×192

1×1卷积通道为64

3×3卷积通道为128

5×5卷积通道为32

左图卷积核参数:192 × (1×1×64) +192 × (3×3×128) + 192 × (5×5×32) = 387072

右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了:

192 × (1×1×64) +(192×1×1×96+ 96 × 3×3×128)+(192×1×1×16+16×5×5×32)= 157184

同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量**(feature map尺寸指W、H是共享权值的sliding window,feature map 的数量就是channels)**

左图feature map数量:64 + 128 + 32 + 192(pooling后feature map不变) = 416 (如果每个模块都这样,网络的输出会越来越大)

右图feature map数量:64 + 128 + 32 + 32(pooling后面加了通道为32的1×1卷积) = 256

GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)

例子2:ResNet中的残差模块

假设上一层的feature map是w*h*256,并且最后要输出的是256个feature map

左侧操作数:w*h*256*3*3*256 =589824*w*h

右侧操作数:w*h*256*1*1*64 + w*h*64*3*3*64 +w*h*64*1*1*256 = 69632*w*h,,左侧参数大概是右侧的8.5倍。(实现降维,减少参数)

2、升维(用最少的参数拓宽网络channal)

**例子:**上一个例子中,不仅在输入处有一个1*1卷积核,在输出处也有一个卷积核,3*3,64的卷积核的channel是64,只需添加一个1*1,256的卷积核,只用64*256个参数就能把网络channel从64拓宽四倍到256。

3、跨通道信息交互(channal 的变换)

**例子:**使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。

注意:只是在channel维度上做线性组合,W和H上是共享权值的sliding window

4、增加非线性特性

1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

**备注:**一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuro。

四、从fully-connected layers的角度来理解1*1卷积核

将其看成全连接层

左边6个神经元,分别是a1---a6,通过全连接之后变成5个,分别是b1---b5

左边6个神经元相当于输入特征里面的channels:6

右边5个神经元相当于1*1卷积之后的新的特征channels:5

左边 W*H*6 经过 1*1*5的卷积核就能实现全连接。

In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution kernels and a full connection table-- Yann LeCun

参考:https://iamaaditya.github.io/2016/03/one-by-one-convolution/

相关推荐
AI即插即用26 分钟前
即插即用系列 | WPFormer:基于小波与原型增强的双域 Transformer 表面缺陷检测网络
人工智能·深度学习·目标检测·计算机视觉·视觉检测·transformer
亚里随笔30 分钟前
SAPO:软自适应策略优化——大语言模型强化学习训练的稳定新范式
人工智能·深度学习·机器学习·语言模型·大语言模型·rlhf
cyyt32 分钟前
深度学习周报(12.1~12.7)
人工智能·深度学习
shayudiandian35 分钟前
Keras深度学习框架入门教程
人工智能·深度学习·keras
万俟淋曦1 小时前
【论文速递】2025年第34周(Aug-17-23)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·ai·机器人·论文·具身智能
JeJe同学1 小时前
Diffusion模型相比GAN优势与缺点?
人工智能·神经网络·生成对抗网络
roman_日积跬步-终至千里1 小时前
【计算机视觉(5)】特征检测与匹配基础篇:从Harris到SIFT的完整流程
人工智能·深度学习·计算机视觉
AI街潜水的八角2 小时前
番茄成熟度检测和识别3:基于深度学习YOLOv12神经网络实现番茄成熟度检测和识别(含训练代码、数据集和GUI交互界面)
深度学习·神经网络·yolo
xqlily2 小时前
PyTorch:深度学习研究的核心引擎(上)
人工智能·pytorch·深度学习
weixin_421585012 小时前
模型组装:new_model = tf.keras.Model(inputs=输入张量, outputs=输出张量)
人工智能·深度学习